
R-19 Syllabus for ECE - JNTUK w. e. f. 2019 – 20

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

III Year - II Semester L T P C
3 0 0 3

INTERNET OF THINGS

Course Objectives:
 To learn and understand elements of IoTsystem.
 Acquire knowledge about various protocols ofIoT.
 To learn and understand design principles and capabilities ofIoT.

UNIT I: Introduction to IoT
Introduction to IoT, Architectural Overview, Design principles and needed capabilities, Basics of
Networking, M2M and IoT Technology Fundamentals- Devices andgateways, Data
management, Business processes in IoT, Everything as a Service (XaaS), Role ofCloud in IoT,
Security aspects inIoT.

UNIT II: Elements of IoT
Hardware Components- Computing- Arduino, Raspberry Pi, ARM Cortex-A class processor,
Embedded Devices – ARM Cortex-M class processor, Arm Cortex-M0 Processor Architecture,
Block Diagram, Cortex-M0 Processor Instruction Set, ARM and Thumb Instruction Set.

UNIT III: IoT Application Development
Communication, IoT Applications, Sensing, Actuation, I/O interfaces.
Software Components- Programming API’s (using Python/Node.js/Arduino) for
CommunicationProtocols-MQTT, ZigBee, CoAP, UDP, TCP, Bluetooth.
Bluetooth Smart Connectivity
Bluetooth overview, Bluetooth Key Versions, Bluetooth Low Energy (BLE) Protocol, Bluetooth,
Low Energy Architecture, PSoC4 BLE architecture and Component Overview.

UNIT IV: Solution framework for IoT applications
Implementation of Device integration, Data acquisitionand integration, Device data storage-
Unstructured data storage on cloud/local server,Authentication, authorization of devices.

UNIT V: IoT Case Studies
IoT case studies and mini projects based on Industrial automation, Transportation,
Agriculture,Healthcare, HomeAutomation.

Text Books:

1. Raj Kamal, “Internet of Things: Architecture and Design Principles”, 1st Edition,
McGraw Hill Education,2017.

2. The Definitive Guide to the ARM Cortex-M0 by JosephYiu,2011
3. Vijay Madisetti, ArshdeepBahga, Internet of Things, “A Hands on Approach”,

UniversityPress,2015.

R-19 Syllabus for ECE - JNTUK w. e. f. 2019 – 20

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

References:
1. Cypress Semiconductor/PSoC4 BLE (Bluetooth Low Energy) Product TrainingModules.
2. Pethuru Raj and Anupama C. Raman, “The Internet of Things: EnablingTechnologies,

Platforms, and Use Cases”, CRC Press,2017.

Course Outcomes:
The student will be able to:

 Understand internet of Things and its hardware and softwarecomponents.
 Interface I/O devices, sensors &communicationmodules.
 Remotely monitor data and controldevices.
 Design real time IoT basedapplications

IOT

UNIT-1

INTERNET OF THINGS: Internet of Things (IoT) is a concept which enables communication

between internetworking devices and applications, whereby physical objects or ‘things’ communicate

through the Internet.

 The concept of IoT beganwith things classified as identity communication devices. Radio Frequency

Identification Device (RFID) is an example of an identity communication device. Things are tagged to

these devices for their identification in future and can be tracked, controlled and monitored using

remote computers connected through the Internet.

The concept of IoT enables, for example, GPS-based tracking, controlling and monitoring of devices;

machine-to-machine (M2M) communication; connected cars; communication between wearable and

personal devices and Industry 4.0.

1 IoT Definition The Internet is a vast global network of connected servers, computers, tablets and

mobiles that is governed by standard protocols for connected systems. It enables sending, receiving, or

communication of information, connectivity with remote servers, cloud and analytics platforms.

Thing in English has number of uses and meanings. In a dictionary, thing is a word used to refer to a

physical object, an action or idea, a situation or activity, in case when one does not wish to be precise.

Example of reference to an object is—an umbrella is a useful thing in rainy days. Streetlight is also

referred to as a thing. Example of reference to an action is— such a thing was not expected from him.

Example of reference to a situation is—such things were in plenty in that regime. Thus, combining both

the terms, the definition of IoT can be explained as follows:

Internet of Things means a network of physical things (objects) sending, receiving, or

communicating information using the Internet or other communication technologies and network just

as the computers, tablets and mobiles do, and thus enabling the monitoring, coordinating or controlling

process across the Internet or another data network.

Another source, defines the term IoT as follows:

Internet of Things is the network of physical objects or ‘things’ embedded with electronics, software,

sensors and connectivity to enable it to achieve greater value and service by exchanging data with the

manufacturer, operator and/or other connected devices. Each thing is uniquely identifiable through its

embedded computing system but is able to interoperate within the existing Internet infrastructure.

IoT Vision Internet of Things is a vision where things (wearable watches, alarm clocks, home devices,

surrounding objects) become ‘smart’ and function like living entities by sensing, computing and

communicating through embedded devices which interact with remote objects (servers, clouds,

applications, services and processes) or persons through the Internet or Near-Field Communication

(NFC) etc. The vision of IoT can be understood through Examples 1.1 and 1.2.

Example 1.1:

Through computing, an umbrella can be made to function like a living entity. By installing a tiny

embedded device, which interacts with a web based weather service and the devices owner through the

Internet the following communication can take place. The umbrella, embedded with a circuit for the

purpose of computing and communication connects to the Internet. A website regularly publishes the

weather report. The umbrella receives these reports each morning, analyses the data and issues

reminders to the owner at intermittent intervals around his/her office-going time. The reminders can be

distinguished using differently coloured LED flashes such as red LED flashes for hot and sunny days,

yellow flashes for rainy days.

 A reminder can be sent to the owner’s mobile at a pre-set time before leaving for office using NFC,

Bluetooth or SMS technologies. The message can be—(i) Protect yourself from rain. It is going to rain.

Don’t forget to carry the umbrella; (ii) Protect yourself from the sun. It is going to be hot and sunny.

Don’t forget to carry the umbrella. The owner can decide to carry or not to carry the umbrella using the

Internet connected umbrella.

Example 1.2:

 Streetlights in a city can be made to function like living entities through sensing and computing

using tiny embedded devices that communicate and interact with a central control-and-command

station through the Internet. Assume that each light in a group of 32 streetlights comprises a sensing,

computing and communication circuit. Each group connects to a group-controller (or coordinator)

through Bluetooth or ZigBee. Each controller further connects to the central command-and-control

station through the Internet.

 The station receives information about each streetlight in each group in the city at periodic

intervals. The information received is related to the functioning of the 32 lights, the faulty lights, about

the presence or absence of traffic in group vicinity, and about the ambient conditions, whether cloudy,

dark or normal daylight.

 The station remotely programs the group controllers, which automatically take an appropriate

action as per the conditions of traffic and light levels. It also directs remedial actions in case a fault

develops in a light at a specific location. Thus, each group in the city is controlled by the ‘Internet of

streetlights’. Figure 1.1 shows the use of the IoT concept for streetlights in a city

IoT CONCEPTUAL FRAMEWORK Example 1.1 showed a single object (umbrella) communicating with a

central server for acquiring data. The following equation describes a simple conceptual framework of

IoT2 :

Physical Object + Controller, Sensor and Actuators + Internet = Internet of Things … 1.1

Equation 1.1 conceptually describes the Internet of umbrellas as consisting of an umbrella, a controller,

sensor and actuators, and the Internet for connectivity to a web service and a mobile service provider.

 Generally, IoT consists of an internetwork of devices and physical objects wherein a number of

objects can gather the data at remote locations and communicate to units managing, acquiring,

organising and analysing the data in the processes and services. Example 1.2 showed the number of

streetlights communicating data to the group controller which connects to the central server using the

Internet. A general framework consists of the number of devices communicating data to a data centre or

an enterprise or a cloud server. The IoT framework of IoT used in number of applications as well as in

enterprise and business processes is therefore, in general, more complex than the one represented by

Equation 1.1. The equation below conceptually represents the actions and communication of data at

successive levels in IoT consisting of internetworked devices and objects.

 Gather + Enrich + Stream + Manage + Acquire + Organise and Analyse … 1.2

Equation 1.2 is an IoT conceptual framework for the enterprise processes and services, based on a

suggested IoT architecture given by Oracle (Figure 1.5 in Section 1.3). The steps are as as follows:

 1. At level 1 data of the devices (things) using sensors or the things gather the pre data from the

internet.

2. A sensor connected to a gateway, functions as a smart sensor (smart sensor refers to a sensor with

computing and communication capacity). The data then enriches at level 2, for example, by transcoding

at the gateway. Transcoding means coding or decoding before data transfer between two entities.

3. A communication management subsystem sends or receives data streams at level 3.

4. Device management, identity management and access management subsystems receive the device’s

data at level 4.

5. A data store or database acquires the data at level 5.

6. Data routed from the devices and things organises and analyses at level 6. For example, data is

analysed for collecting business intelligence in business processes.

The equation below is an alternative conceptual representation for a complex system. It is based on IBM

IoT conceptual framework. The equation shows the actions and communication of data at successive

levels in IoT. The framework manages the IoT services using data from internetwork of the devices and

objects, internet and cloud services, and represents the flow of data from the IoT devices for managing

the IoT services using the cloud server. Gather + Consolidate + Connect + Collect + Assemble + Manage

and Analyse … 1.3 Equation 1.3 represents a complex conceptual framework for IoT using cloud-

platformbased processes and services.

 The steps are as follows: 1. Levels 1 and 2 consist of a sensor network to gather and consolidate the

data. First level gathers the data of the things (devices) using sensors circuits. The sensor connects to a

gateway. Data then consolidates at the second level, for example, transformation at the gateway at level

2.

 2. The gateway at level 2 communicates the data streams between levels 2 and 3. The system uses a

communication-management subsystem at level 3.

3. An information service consists of connect, collect, assemble and manage subsystems at levels 3 and

4. The services render from level 4.

4. Real time series analysis, data analytics and intelligence subsystems are also at levels 4 and 5. A cloud

infrastructure, a data store or database acquires the data at level 5. Figure 1.3 shows blocks and

subsystems for IoT in the IBM conceptual framework. New terms in the figure will be explained in the

subsequent chapters. Various conceptual frameworks of IoT find number of applications including the

ones in M2M communication networks, wearable devices, city lighting, security and surveillance and

home automation. Smart systems use the things (nodes) which consist of smart devices, smart objects

and smart services. Smart systems use the user interfaces (UIs), application programming interfaces

(APIs), identification data, sensor data and communication ports.

IoT ARCHITECTURAL VIEW:

An IoT system has multiple levels (Equations 1.1 to 1.3). These levels are also known as tiers. A model

enables conceptualisation of a framework. A reference model can be used to depict building blocks,

successive interactions and integration. An example is CISCO’s presentation of a reference model

comprising seven levels (Figure 1.4). New terms in the figure will be explained in the subsequent

chapters.

A reference model could be identified to specify reference architecture. Several reference architectures

are expected to co-exist in the IoT domain. Figure 1.5 shows an Oracle suggested IoT architecture. New

terms in the figure will be explained in the subsequent chapters.

 An architecture has the following features:

● The architecture serves as a reference in applications of IoT in services and business processes.

● A set of sensors which are smart, capture the data, perform necessary data element analysis and

transformation as per device application framework and connect directly to a communication manager.

● A set of sensor circuits is connected to a gateway possessing separate data capturing, gathering,

computing and communication capabilities. The gateway receives the data in one form at one end and

sends it in another form to the other end.

● The communication-management subsystem consists of protocol handlers, message routers and

message cache.

 ● This management subsystem has functionalities for device identity database, device identity

management and access management.

● Data routes from the gateway through the Internet and data centre to the application server or

enterprise server which acquires that data.

● Organisation and analysis subsystems enable the services, business processes, enterprise integration

and complex processes (These terms are explained in Chapter 5).

 A number of models (CISCO, Purdue and other models) have been proposed at SWG (Sub

Working Group) Teleconference of December 2014. Standards for an architectural framework for the

IoT have been developed under IEEE project P2413. IEEE working group is working on a set of guidelines

for the standard IEEE suggested P24133 standard for architecture of IoT. It is a reference architecture

which builds upon the reference model(s). The reference architecture covers the definition of basic

architectural building blocks and their integration capability into multi-tiered systems

P2413 architectural framework4 is a reference model that defines relationships among various IoT

verticals, for example, transportation and healthcare. P2413 provides for the following:

Follows top-down approach (consider top layer design first and then move to the lowest)

● Does not define new architecture but reinvent existing architectures congruent with it

● Gives a blueprint for data abstraction

● Specifies abstract IoT domain for various IoT domains

● Recommends quality ‘quadruple’ trust that includes protection, security, privacy and safety

● Addresses how to document

● Strives for mitigating architecture divergence(s) Scope of IEEE P2413 standard defines an architectural

framework for the IoT. It includes descriptions of various IoT domains, definitions of IoT domain

abstractions and identification of commonalities between different IoT domains. Smart manufacturing,

smart grid, smart buildings, intelligent transport, smart cities and e-health are different IoT domains.

P2413 leverages existing applicable standards. It identifies planned or ongoing projects with a similar or

overlapping scope.5

TECHNOLOGY BEHIND IoT: The following entities provide a diverse technologyenvironment and

are examples of technologies, which are involved in IoT.

 ● Hardware (Arduino Raspberry Pi, Intel Galileo, Intel Edison, ARM mBed, Bosch XDK110, Beagle Bone

Black and Wireless SoC)

● Integrated Development Environment (IDE) for developing device software, firmware and APIs

● Protocols [RPL, CoAP, RESTful HTTP, MQTT, XMPP (Extensible Messaging and Presence Protocol)]

● Communication (Powerline Ethernet, RFID, NFC, 6LowPAN, UWB, ZigBee, Bluetooth, WiFi, WiMax,

2G/3G/4G)

● Network backbone (IPv4, IPv6, UDP and 6LowPAN) ● Software (RIOT OS, Contiki OS, Thingsquare Mist

firmware, Eclipse IoT)

● Internetwork Cloud Platforms/Data Centre (Sense, ThingWorx, Nimbits, Xively, openHAB, AWS IoT,

IBM BlueMix, CISCO IoT, IOx and Fog, EvryThng, Azure, TCS CUP)

● Machine learning algorithms and software. An example of machine-learning software is GROK from

Numenta Inc. that uses machine intelligence to analyse the streaming data from clouds and uncover

anomalies, has the ability to learn continuously from data and ability to drive action from the output of

GROK’s data models and perform high level of automation for analysing streaming data.

 The following five entities can be considered for the five levels behind an IoT system (Figure 1.3): 1.

Device platform consisting of device hardware and software using a microcontroller (or SoC or custom

chip), and software for the device APIs and web applications 2. Connecting and networking (connectivity

protocols and circuits) enabling internetworking of devices and physical objects called things and

enabling the internet connectivity to remote servers 3. Server and web programming enabling web

applications and web services 4. Cloud platform enabling storage, computing prototype and product

development platforms 5. Online transactions processing, online analytics processing, data analytics,

predictive analytics and knowledge discovery enabling wider applications of an IoT system

Server-end Technology :IoT servers are application servers, enterprise servers, cloud servers,

data centres and databases. Servers offer the following software components: ● Online platforms ●

Devices identification, identity management and their access management ● Data accruing, aggregation,

integration, organising and analysing ● Use of web applications, services and business processes

Major Components of IoT System

 Major components of IoT devices are:

1. Physical object with embedded software into a hardware.

2. consisting of a microcontroller, firmware, sensors, control unit, actuators and communication

module.

 3. Communication module: Software consisting of device APIs and device interface for communication

over the network and communication circuit/port(s), and middleware for creating communication stacks

using 6LowPAN, CoAP, LWM2M, IPv4, IPv6 and other protocols.

 4. for actions on messages, information and commands which the devices receive and then output to

the actuators, which enable actions such as glowing LEDs, robotic hand movement etc.

Sensors and Control Units Sensors Sensors are electronic devices that sense the physical environments.

An industrial automation system or robotic system has multiple smart sensors embedded in it. Sensor-

actuator pairs are used in control systems. A smart sensor includes computing and communication

circuits.

Recall Example 1.2 of Internet of streetlights. Each light has sensors for measuring surrounding light-

intensity and surrounding traffic-proximity for sensing and transmitting the data after aggregation over

a period. Sensors are used for measuring temperature, pressure, humidity, light intensity, traffic

proximity, acceleration in an accelerometer, signals in a GPS, proximity sensor, magnetic fields in a

compass, and magnetic intensity in a magnetometer.

Sensors are of two types. The first type gives analog inputs to the control unit. Examples are thermistor,

photoconductor, pressure gauge and Hall sensor. The second type gives digital inputs to the control unit.

Examples are touch sensor, proximity sensor, metal sensor, traffic presence sensor, rotator encoder for

measuring angles and linear encoders for measuring linear displacements. Sensors and circuits are

explained in detail in Chapter 7.

Control Units Most commonly used control unit in IoT consists of a Microcontroller Unit (MCU) or a

custom chip. A microcontroller is an integrated chip or core in a VLSI or SoC. Popular microcontrollers

are ATmega 328, ATMega 32u4, ARM Cortex and ARM LPC. An MCU comprises a processor, memory and

several other hardware units which are interfaced together. It also has firmware, timers, interrupt

controllers and functional IO units.

 Additionally, an MCU has application-specific functional circuits designed as per the specific version of a

given microcontroller family. For example, it may possess Analog to Digital Converters (ADC) and Pulse

Width Modulators (PWM). Figure 1.6 shows various functional units in an MCU that are embedded in an

IoT device or a physical object. New terms in the figure will be discussed in detail in Chapter 8. Sensor

types—analog and digital output sensors Internet of Things: An Overview 15 Microcontroller

Communication Module

 A communication module consists of protocol handlers, message queue and message cache. A device

message-queue inserts the messages in the queue and deletes the messages from the queue in a first-in

first-out manner. A device message-cache stores the received messages.

Representational State Transfer (REST) architectural style can be used for HTTP access by GET, POST,

PUT and DELETE methods for resources and building web services. Communication protocols and REST

style are explained in detail Chapter 3 and 4.

Software IoT software consists of two components—software at the IoT device and software at the

IoT server. Figure 1.7 shows the software components for the IoT device hardware and server.

Embedded software and the components are explained in Chapter 8. Software APIs, online component

APIs and web APIs are explained in Section 9.4.

 Middleware OpenIoT is an open source middleware. It enables communication with sensor clouds

as well as cloud-based ‘sensing as a service’. IoTSyS is a middleware which enables provisioning of

communication stack for smart devices using IPv6, oBIX, 6LoWPAN, CoAP and multiple standards and

protocols. The oBIX is standard XML and web services protocol oBIX (Open Building Information

Xchange).

Operating Systems (OS) Examples of OSs are RIOT, Raspbian, AllJoyn, Spark and Contiki.

RIOT is an operating system for IoT devices. RIOT supports both developer and multiple architectures,

including ARM7, Cortex-M0, Cortex-M3, Cortex-M4, standard x86 PCs and TI MSP430.

Raspbian is a popular Raspberry Pi operating system that is based on the Debian distribution of Linux

AllJoyn is an open-source OS created by Qualcomm. It is a cross platform OS with APIs available for

Android, iOS, OS X, Linux and Windows OSs. It includes a framework and a set of services. It enables the

manufacturers to create compatible devices.

Spark is a distributed, cloud-based IoT operating system and web-based IDE. It includes a command-line

interface, support for multiple languages and libraries for working with several different IoT devices

Contiki OS7 is an open-source multitasking OS. It includes 6LowPAN, RPL, UDP, DTLS and TCP/IP

protocols which are required in low-power wireless IoT devices. Example of applications are street

lighting in smart cities, which requires just 30 kB ROM and 10 kB RAM.

IV Unit – M2M and IoT Technology Fundamentals

1

UNIT IV: M2M and IoT Technology Fundamentals

Devices and gateways, Local and wide area networking, Data management, Business processes

in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge Management.

4.1 Devices and gateways

4.1.1 Introduction

 There is a growing market for small-scale embedded processing such as 8-, 16-, and 32-

bit microcontrollers with on-chip RAM and flash memory, I/O capabilities, and

networking interfaces such as IEEE 802.15.4 that are integrated on tiny System-on-a-

Chip (SoC) solutions.

 Such devices enable very constrained devices with a small footprint of a few mm2 and

with a very low power consumption in the milli- to micro-Watt range, but which are

capable of hosting an entire Transmission Control Protocol/Internet Protocol (TCP/IP)

stack, including a small web server.

 A device is a hardware unit that can sense aspects of it’s environment and/or actuate, i.e.

perform tasks in its environment.

 A device can be characterized as having several properties, including:

• Microcontroller: 8-, 16-, or 32-bit working memory and storage.

• Power Source: Fixed, battery, energy harvesting, or hybrid.

• Sensors and Actuators: Onboard sensors and actuators, or circuitry that allows them

to be connected, sampled, conditioned, and controlled.

• Communication: Cellular, wireless, or wired for LAN and WAN communication.

• Operating System (OS): Main-loop, event-based, real-time, or full featured OS.

• Applications: Simple sensor sampling or more advanced applications.

• User Interface: Display, buttons, or other functions for user interaction.

• Device Management (DM): Provisioning, firmware, bootstrapping, and monitoring.

• Execution Environment (EE): Application lifecycle management and Application

Programming Interface (API).

4.1.1.1 Device types

 Group devices into two categories

• Basic Devices: Devices that only provide the basic services of sensor readings and/or

actuation tasks, and in some cases limited support for user interaction. LAN

IV Unit – M2M and IoT Technology Fundamentals

2

communication is supported via wired or wireless technology, thus a gateway is

needed to provide the WAN connection.

• Advanced Devices: In this case the devices also host the application logic and a

WAN connection. They may also feature device management and an execution

environment for hosting multiple applications. Gateway devices are most likely to fall

into this category.

4.1.1.2 Deployment scenarios for devices

 Example deployment scenarios for basic devices include:

• Home Alarms: Such devices typically include motion detectors, magnetic

sensors, and smoke detectors. A central unit takes care of the application logic that

calls security and sounds an alarm if a sensor is activated when the alarm is armed.

The central unit also handles the WAN connection towards the alarm central. These

systems are currently often based on proprietary radio protocols.

• Smart Meters: The meters are installed in the households and measure

consumption of, for example, electricity and gas. A concentrator gateway collects data

from the meters, performs aggregation, and periodically transmits the aggregated data

to an application server over a cellular connection. By using a capillary network

technology it’s possible to extend the range of the concentrator gateway by allowing

meters in the periphery to use other meters as extenders, and interface with handheld

devices on the Home Area Network side.

• Building Automation Systems (BASs): Such devices include

thermostats, fans, motion detectors, and boilers, which are controlled by local

facilities, but can also be remotely operated.

• Standalone Smart Thermostats: These use Wi-Fi to communicate with web

services. Examples for advanced devices, meanwhile, include:

• Onboard units in cars that perform remote monitoring and configuration over a

cellular connection.

• Robots and autonomous vehicles such as unmanned aerial vehicles that can

work both autonomously or by remote control using a cellular connection.

• Video cameras for remote monitoring over 3G and LTE.

• Oil well monitoring and collection of data points from remote devices.

• Connected printers that can be upgraded and serviced remotely.

IV Unit – M2M and IoT Technology Fundamentals

3

4.1.2 Basic devices

 These devices are often intended for a single purpose, such as measuring air pressure or

closing a valve. I

 In some cases several functions are deployed on the same device, such as monitoring

humidity, temperature, and light level.

 The main focus is on keeping the bill of materials (BOM) as low as possible by using

inexpensive microcontrollers with built-in memory and storage, often on an SoC-

integrated circuit with all main components on one single chip (Figure 5.1).

 Another common goal is to enable battery as a power source, with a lifespan of a year

and upwards by using ultra-low energy microcontrollers.

 The microcontroller typically hosts a number of ports that allow integration with sensors

and actuators, such as General Purpose I/O (GPIO) and an analog-to-digital converter

(ADC) for supporting analog input.

 For certain actuators, such as motors, pulse-width modulation (PWM) can be used.

 As low-power operation is paramount to battery-powered devices, the microcontroller

hosts functions that facilitate sleeping, such as interrupts that can wake up the device on

external and internal events.

IV Unit – M2M and IoT Technology Fundamentals

4

 Some devices even go as far as harvesting energy from their environment, e.g. in the

form of solar, thermal, and physical energy.

 To interact with peripherals such as storage or display, it’s common to use a serial

interface such as SPI, I2C, or UART.

 These interfaces can also be used to communicate with another microcontroller on the

device.

 This is common when the there is a need for offloading certain tasks, or when in some

cases the entire application logic is put on a separate host processor.

 It’s not unusual for the micro controller to also contain a security processor,e.g. to

accelerate Advanced Encryption Standard (AES).

 This is necessary to allow encrypted communication over the radio link without the need

for a host processor.

 The gateway together with the connected devices form a capillary network.

 The microcontroller contains most of the radio functions needed for communicating with

the gateway and other devices in the same capillary network.

 An external antenna is, however, necessary, and preferably a filter that removes

unwanted frequencies, e.g. a surface acoustic wave (SAW) filter.

 Due to limited computational resources, these devices commonly do not use a typical OS.

 It may be something as simple as a single-threaded main-loop or a low-end OS such as

FreeRTOS, Atomthreads, AVIX-RT, ChibiOS/RT, ERIKA Enterprise, TinyOS, or

Thingsquare Mist/Contiki.

 These OSes offer basic functionality, e.g. memory and concurrency model management,

(sensor and radio) drivers, threading, TCP/IP, and higher level protocol stacks.

 The actual application logic is located on top of the OS or in the mainloop.

 A typical task for the application logic is to read values from the sensors and to provide

these over the LAN interface in a semantically correct manner with the correct units.

4.1.3 Gateways

 A gateway serves as a translator between different protocols, e.g. between IEEE 802.15.4

or IEEE 802.11, to Ethernet or cellular.

 There are many different types of gateways, which can work on different levels in the

protocol layers.

 A gateway refers to a device that performs translation of the physical and link layer, but

application layer gateways (ALGs) are also common.

 The latter is preferably avoided because it adds complexity and is a common source of

error in deployments.

 Some examples of ALGs include the ZigBee Gateway Device which translates from

ZigBee to SOAP and IP, or gateways that translate from Constrained Application

Protocol (CoAP) to HyperText Transfer Protocol/Representational State Transfer

(HTTP/REST).

IV Unit – M2M and IoT Technology Fundamentals

5

 Tthe gateway device is also used for many other tasks, such as data management, device

management, and local applications.

4.1.3.1 Data management

 Typical functions for data management include performing sensor readings and caching

this data, as well as filtering, concentrating, and aggregating the data before transmitting

it to back-end servers.

4.1.3.2 Local applications

 Examples of local applications that can be hosted on a gateway include closed loops,

home alarm logic, and ventilation control, or the data management function above

 The benefit of hosting this logic on the gateway instead of in the network is to avoid

downtime in case of WAN connection failure, minimize usage of costly cellular data,

and reduce latency.

 To facilitate efficient management of applications on the gateway, it’s necessary to

include an execution environment.

 The execution environment is responsible for the lifecycle management of the

applications, including installation, pausing, stopping, configuration, and uninstallation of

the applications.

 A common example of an execution environment for embedded environments is OSGi,

which is based on Java: applications are built as one or more Bundles, which are

packaged as Java JAR files and installed using a so-called Management Agent.

 The Management Agent can be controlled from, for example, a terminal shell or via a

protocol such as CPE WAN Management Protocol (CWMP).

 Bundle packages can be retrieved from the local file system or over HTTP, for example.

OSGi also provides security and versioning for Bundles, which means that

communication between Bundles is controlled, and several versions of them can exist.

 The benefit of versioning and the lifecycle management functions is that the OSGi

environment never needs to be shut down when upgrading, thus avoiding downtime in

the system.

 Also, Linux can be used as an execution environment.

4.1.3.3 Device management

 Device management (DM) is an essential part of the IoT and provides efficient means to

perform many of the management tasks for devices:

• Provisioning: Initialization (or activation) of devices in regards to configuration and

features to be enabled.

• Device Configuration: Management of device settings and parameters.

• Software Upgrades: Installation of firmware, system software, and applications on the

device.

IV Unit – M2M and IoT Technology Fundamentals

6

• Fault Management: Enables error reporting and access to device status.

 Examples of device management standards include TR-069 and OMA-DM.

 In the simplest deployment, the devices communicate directly with the DM server.

 This is, however, not always optimal or even possible due to network or protocol

constraints, e.g. due to a firewall or mismatching protocols.

 In these cases, the gateway functions as mediator between the server and the devices, and

can operate in three different ways:

• If the devices are visible to the DM server, the gateway can simply forward the

messages between the device and the server and is not a visible participant in the

session.

• In case the devices are not visible but understand the DM protocol in use, the

gateway can act as a proxy, essentially acting as a DM server towards the device

and a DM client towards the server.

• For deployments where the devices use a different DM protocol from the server,

the gateway can represent the devices and translate between the different

protocols (e.g. TR-069, OMA-DM, or CoAP).

 The devices can be represented either as virtual devices or as part of the gateway

4.1.4 Advanced devices

 An advanced device are the following:

• A powerful CPU or microcontroller with enough memory and storage to host

advanced applications, such as a printer offering functions for copying, faxing,

printing, and remote management.

• A more advanced user interface with, for example, display and advanced user

input in the form of a keypad or touch screen.

• Video or other high bandwidth functions.

4.1.5 Summary and vision

 The most important of these is security, both in terms of physical security as well as

software and network security.

 External factors that can affect the operation of the devices, such as rain, wind,

chemicals, and electromagnetic influences.

 One of the major effects that the IoT will have on devices is to disrupt the current value

chains, where one actor controls everything from device to service.

 This will happen due to standardization and consolidation of technologies, such as

protocols, OSes, software and programming languages (e.g. Java for embedded devices),

and the business

 New types of actors will be able to enter the market, e.g. specialized device vendors,

cloud solution providers, and service providers.

IV Unit – M2M and IoT Technology Fundamentals

7

 Standardization will improve interoperability between devices, as well as between

devices and services, resulting in commoditization of both.

 Another expected outcome of improved interoperability is the possibility to reuse the

same device for multiple services;

 for example, a motion detector can be used both for security purposes as well as for

reducing energy consumption by detecting when no one is in the room.

 Thanks to developments in hardware and network technologies, entirely new device

classes and features are expected, such as:

• Battery-powered devices with ultra-low power cellular connections.

• Devices that harvest energy from their environment.

• Smart bandwidth management and protocol switching, i.e. using adaptive RF

mechanisms to swap between, for example, Bluetooth LE and IEEE 802.15.4.

• Multi-radio/multi-rate to switch between bands or bit rates

• Microcontrollers with multicore processors.

• Novel software architectures for better handling of concurrency.

• The possibility to automate the design of integrated circuits based on

 business-level logic and use case.

4.2 Local and wide area networking

4.2.1 The need for networking

 A network is created when two or more computing devices exchange data or information.

 The ability to exchange pieces of information using telecommunications technologies has

changed the world

 Devices are known as “nodes” of the network, and they communicate over “links.”

 In modern computing, nodes range from personal computers, servers, and dedicated

packet switching hardware, to smart phones, games consoles, television sets and,

increasingly, heterogeneous devices that are generally characterized by limited resources

and functionalities.

 Limitations typically include computation, energy, memory, communication (range,

bandwidth, reliability, etc.) and application specificity (e.g. specific sensors, actuators,

tasks), etc. Such devices are typically dedicated to specific tasks, such as sensing,

monitoring, and control.

 Network links rely upon a physical medium, such as electrical wires, air, and optical

fibers, over which data can be sent from one network node to the next.

 A selected physical medium determines a number of technical and economic

considerations.

IV Unit – M2M and IoT Technology Fundamentals

8

 Nodes of the network must have an awareness of all nodes in the network with which

they can indirectly communicate. This can be a direct connection over one link (edge, the

transition or communication between two nodes over a link), or knowledge of a route to

the desired (destination) node by communicating through cooperating nodes, over

multiple edges.

 In Figure 5.2 is the simplest form of network that requires knowledge of a route to

communicate between nodes that do not have direct physical links.

 if node A wishes to transfer data to node C, it must do so through node B.

 Thus, node B must be capable of the following:

 Communicating with both node A and node C,

 advertising to node A and node C that it can act as an intermediary.

 Basic networking requirements have become explicit.

 It is essential to uniquely identify each node in the network, and it is necessary to have

cooperating nodes capable of linking nodes between which physical links do not exist.

 In modern computing, this equates to IP addresses and routing tables.

 Consider the differences between streaming video from a surveillance camera, for

example, and an intrusion-detection system based on a passive sensor.

 Streaming video requires high bandwidth, whereas transmitting a small amount of

information about the detection of an intruder requires a tiny amount of bandwidth, but a

higher degree of reliability with respect to both the communications link and the accuracy

of the detection.

 Node A is a device that can only communicate over a particular wireless channel of

limited range

 Node B is cap able of communicating with node A, but also with an application server

with service capabilities (node C, with which it can connect using wired Ethernet, e.g.

over a complex link using a standardized protocol and/or web service such as REST at

the application layer) over the Internet.

 Node B may be connected to a sub-network (of child nodes, similar to node A) of up to

thousands of similarly constrained devices (A1. . .An).

 These thousands of devices may be equipped with sensors, deployed specifically to

monitor some physical phenomenon.

 They can only communicate with one another and node B, and may communicate with

each other over single or multiple hops.

IV Unit – M2M and IoT Technology Fundamentals

9

 Consider that the owner of the WSN wishes to obtain the data from each of the (A1. .

.An) devices in the WSN.

 However, the preferred way to read the data is through a web browser, or application on a

smartphone/tablet, via node C.

 Therefore, a networking solution is required to transfer all of the WSN data from nodes

A1. . .An to node C, through node B.

 This concept maps directly to the M2M Functional Architecture, where nodes A1. . .An

are an M2M Area Network, node B is an M2M Gateway, and node C is representative of

M2M Service Capabilities and Applications.

 A Local Area Network (LAN) was traditionally distinguishable from a Wide Area

Network (WAN) based on the geographic coverage requirements of the network, and the

need for third party, or leased, communication infrastructure.

 In the case of the LAN, a smaller geographic region is covered, such as a commercial

building, an office block, or a home, and does not require any leased communications

infrastructure.

 WANs provide communication links that cover longer distances, such as across

metropolitan, regional, or by textbook definition, global geographic areas.

 In practice, WANs are often used to link LANs and Metropolitan Area Networks (MAN)

 LANs tended to cover distances of tens to hundreds of meters, whereas WAN links

spanned tens to hundreds of kilometers.

 The most popular wired LAN technology is Ethernet. Wi-Fi is the most prevalent

wireless LAN (WLAN) technology.

 Wireless WAN (WWAN), as a descriptor, covers cellular mobile telecommunication

networks, a significant departure from WLAN in terms of technology, coverage, network

infrastructure, and architecture.

 Difference between LAN and WAN

S.NO LAN WAN

1.

LAN stands for Local Area

Network.

Whereas WAN stands for Wide Area

Network.

2.

LAN’s ownership is

private.

But WAN’s ownership can be private

or public.

3. The speed of LAN is While the speed of WAN is slower

IV Unit – M2M and IoT Technology Fundamentals

10

S.NO LAN WAN

high(more than WAN). than LAN.

4.

The propagation delay is

short in LAN.

Whereas the propagation delay in

WAN is long(longer than LAN).

5.

There is less congestion in

LAN(local area network).

While there is more congestion in

WAN(Wide Area Network).

6.

There is more fault

tolerance in LAN.

While there is less fault tolerance in

WAN.

7.

LAN’s design and

maintenance is easy.

While it’s design and maintenance is

difficult than LAN.

 The current generation of WWAN technology includes LTE (or 4G) and WiMAX.

 Acting as a link between LANs and Wireless Personal Area Networks (WPANs), M2M

Gateway Devices typically include cellular transceivers, and allow seamless IP-

connectivity over heterogeneous physical media.

 In the home, the “wireless router” typically behaves as a link between the Wi-Fi (WLAN,

and thus connected laptops, tablets, smartphones, etc. commonly found in the home) and

Digital Subscriber Line (DSL) broadband connectivity, traditionally arriving over

telephone lines. “DSL” refers to Internet access carried over legacy (wired) telephone

networks, and encompasses numerous standards and variants.

 “Broadband” indicates the ability to carry multiple signals over a number of frequencies,

with a typical minimum bandwidth of 256 kbps.

 In the office, the Wi-Fi wireless access points are typically connected to the wired

corporate (Ethernet) LAN, which is subsequently connected to a wider area network and

Internet backbone, typically provided by an Internet Service Provider (ISP).

 The need exists to interconnect devices (generally integrated microsystems) with central

data processing and decision support systems, in addition to one another.

 In WLAN technologies, a geographic region can be covered by a network of devices that

connect to the Internet via a gateway device, which may use a leased network connection.

 For example, a gateway device can access the IP backbone over a WWAN (e.g.

GPRS/UMTS/LTE/WiMAX) link, or over a WLAN link.

IV Unit – M2M and IoT Technology Fundamentals

11

 WPANs is the for newer standards that govern low-power, low-rate networks suitable for

M2M and IoT applications.

 “IEEE 802.15.4 _ Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs).

 This is similar to the evolution of Wi-Fi WLAN technology (e.g. IEEE 802.11, a, b, g, n,

etc.).

 Communication ranges for IEEE 802.15.4 technology may range from tens of meters to

kilometers.

 Devices in an M2M Area Network connect to the IP backbone, or Network Domain, via

an M2M Gateway device.

 Gateway device is equipped with a cellular transceiver that is physically compatible with

UMTS or LTE-Advanced, for example, WWAN.

 The same device will also be equipped with the necessary transceiver to communicate on

the same physical medium as the M2M Area Network(s) in the M2M Device Domain.

 M2M Area Networks may include a plethora of wired or wireless technologies,

including: Bluetooth LE/Smart, IEEE 802.15.4 (LR-WPAN; e.g. ZigBee, IETF

6LoWPAN, RPL, CoAP, ISA100.11a, WirelessHART, etc.),

 The “Internet of Things,” as a term, originated from Radio Frequency Identification

(RFID) research, wherein the original IoT concept was that any RFID-tagged “thing”

could have a virtual presence on the “Internet.”

 RFID ,bar codes and QR codes use different technological means to achieve the same

result.

 M2M applications become more synonymous with IoT, it is necessary to understand the

technologies, limitations, and implications of the networking infrastructure.

4.2.2 Wide area networking

 WANs are typically required to bridge the M2M Device Domain to the backhaul

network, thus providing a proxy that allows information (data, commands etc) to traverse

heterogeneous networks.

 It is used to provide communications services between the M2M service enablement and

the physical deployments of devices in the field.

 WAN is capable of providing the bi-directional communications links between services

and devices which is achieved by means of physical and logical proxy.

 The proxy is achieved using an M2M Gateway Device.

 M2M Gateway Device is typically an integrated microsystem with multiple

communications interfaces and computational capabilities.

 It is a critical component in the functional architecture, as it must be capable of handling

all of the necessary interfacing to the M2M Service Capabilities and Management

Functions.

IV Unit – M2M and IoT Technology Fundamentals

12

 Example: consider a device that incorporates both an IEEE 802.15.4-compliant

transceiver, capable of communicating with a capillary network of similarly equipped

devices, and a cellular transceiver that connects to the Internet using the UMTS network.

 Transceivers (sometimes referred to as modems) are typically available as hardware

modules with which the central intelligence of the device (gateway or cell phone)

interacts by means of standardized AT Commands.

 This device is now capable of acting as a physical proxy between the LR-WPAN, or

M2M Device Domain, and the M2M Network Domain.

 The latest ETSI M2M Functional Architecture is illustrated in Figure 5.3.

 The Access and Core Network in the ETSI M2M Functional Architecture are foreseen to

be operated by a Mobile Network Operator (MNO), and can be thought of simply as the

“WAN” for the purposes of interconnecting devices and backhaul networks (Internet),

thus, M2M Applications, Service Capabilities, Management Functions, and Network

Management Functions.

 The WAN covers larger geographic regions using wireless as well as wire-based access.

 WAN technologies include cellular networks (using several generations of technologies),

DSL, WiMAX, Wi-Fi, Ethernet, Satellite, and so forth.

 The WAN delivers a packet-based service using IP as default. Circuit-based services can

also be used in certain situations.

 important functions of the WAN include:

• The main function of the WAN is to establish connectivity between capillary

IV Unit – M2M and IoT Technology Fundamentals

13

networks, hosting sensors, and actuators, and the M2M service enablement.

• The default connectivity mode is packet-based using the IP family of

technologies.

• Many different types of messages can be sent and received. for example, a

message sent from a sensor in an M2M Area Network and resulting in an SMS

received from the M2M Gateway or Application

• Use of identity management techniques (primarily of M2M devices) in cellular

and non-cellular domains to grant right-of-use of the WAN resource.

• The following techniques are used for these purposes:

 MCIM (Machine Communications Identity Module) for remote

provisioning of SIM targeting M2M devices.

 xSIM (x-Subscription Identity Module), like SIM, USIM, ISIM.

 Interface identifiers, an example of which is the MAC address of

the device, typically stored in hardware.

 Authentication/registration type of functions (device focused).

 Authentication, Authorization, and Accounting (AAA), such as

RADIUS services.

 Dynamic Host Configuration Protocol (DHCP), e.g. employing

deployment-specific configuration parameters specified by device,

user, or application-specific parameters residing in a directory.

 Subscription services (device-focused).

 Directory services, e.g. containing user profiles and various device

(s) parameter(s), setting(s), and combinations thereof.

• M2M-specific considerations include, in particular:

 MCIM (cf. 3GPP SA3 work).

 User Data Management (e.g. subscription management).

 Network optimizations (cf. 3GPP SA2 work).

4.2.2.1 3rd generation partnership project technologies and machine type communications

 Machine Type Communications (MTC) is heavily referred to in the ETSI documentation.

 MTC refers to small amounts of data that are communicated between machines (devices

to back-end services and vice versa) without the need for any human intervention. In the

3rd Generation Partnership Project (3GPP), MTC is used to refer to all M2M

communication.

4.2.3 Local area networking

 Capillary networks are typically autonomous, self-contained systems of M2M devices

that may be connected to the cloud via an appropriate Gateway.

IV Unit – M2M and IoT Technology Fundamentals

14

 They are often deployed in controlled environments such as vehicles, buildings,

apartments, factories, bodies, etc. (Figure 5.4) in order to collect sensor measurements,

generate events should sensing thresholds be breached, and sometimes control specific

features of interest (e.g. heart rate of a patient, environmental data on a factory floor, car

speed, air conditioning appliances, etc.).

 There will exist numerous capillary networks that will employ short-range wired and

wireless communication and networking technologies.

 For certain application areas, there is a need for autonomous local operation of the

capillary network.

 In the event that application-level logic is enforceable via the cloud, some will still need

to be managed locally.

 The complexity of the local application logic varies by application.

 For example, a building automation network may need local control loop functionality

for autonomous operation, but can rely on external communication for configuration of

control schemas and parameters.

 The M2M devices in a capillary network are typically thought to be low-capability nodes

(e.g. battery operated, with limited security capabilities) for cost reasons, and should

operate autonomously.

 For this reason, a GW/application server will naturally also be part of the architected

solution for capillary networks.

 More and more (currently closed) capillary networks will open up for integration with the

enterprise back end systems.

 For capillary networks that expose devices to the cloud/Internet, IP is envisioned to be

the common waist.

IV Unit – M2M and IoT Technology Fundamentals

15

 IPv6 will be the protocol of choice for M2M devices that operate a 6LoWPAN-based

stack.

 IPv4 will still be used for capillary networks operating in non-6LoWPAN IP stacks (e.g.

Wi-Fi capillary networks).

 In terms of short-range communication technology convergence, an IPv6 stack with

6LoWPAN running above the physical medium is expected.

 The development of the IEEE 802.15.4g standard, a physical layer amendment to support

Smart Utility Networks (SUN) _ smart grid in particular _ designed to operate over much

larger geographic distances (wireless links spanning tens of kilometers), and specifically

designed for minimal infrastructure, low power, many-device networks.

4.2.3.1 Deployment considerations

 There are increasing numbers of innovative IoT applications (hardware and software)

marketed as consumer products.

 These range from intelligent thermostats for effectively managing comfort and energy

use in the home, to precision gardening tools (sampling weather conditions, soil moisture,

etc.).

 Scaling up for industrial applications and moving from laboratories into the real world

creates significant challenges that are not yet fully understood.

 Low-rate, low-power communications technologies are known to be “lossy.” The reasons

can relate to environmental factors, which impact upon radio performance, technical

factors such as performance trade-offs based on the characteristics of medium access

control and routing protocols, and physical limitations of devices (including software

architectures, runtime and execution environments, computational capabilities, energy

availability, local storage, etc), and practical factors such as maintenance opportunities

(scheduled, remote, accessibility, etc.).

 Numerous deployment environments (factories, buildings, roads, vehicles) are expected

in addition to wildly varying application scenarios and operational and functional

requirements of the systems.

 ETSI describes a set of use cases, namely eHealth, Connected Consumer, Automotive,

Smart Grid, and Smart Meter, that only capture some of the breadth of potential

deployment scenarios and environments that are possible.

 Assuming that IP connectivity can be the fundamental mechanism to bridge

heterogeneous physical and link layer technologies, it stands to reason that fragmentation

can continue such that appropriate technologies are available for the breadth of potential

application scenarios.

4.2.3.2 Key technologies

 Power Line Communication (PLC) refers to communicating over power (or phone, coax,

etc.) lines.

IV Unit – M2M and IoT Technology Fundamentals

16

 This amounts to pulsing, with various degrees of power and frequency, the electrical lines

used for power distribution.

 PLC comes in numerous flavors. At low frequencies (tens to hundreds of Hertz) it is

possible to communicate over kilometers with low bit rates (hundreds of bits per second).

Typically, this type of communication was used for remote metering, and was seen as

potentially useful for the smart grid.

 Enhancements to allow higher bit rates have led to the possibility of delivering broadband

connectivity over power lines.

 There have been a number of attempts to standardize PLC in recent years. NIST recently

included IEEE 1901 and ITU-T G.hn as standards for further review for potential use in

the smart grid in the United States.

 LAN (and WLAN) continues to be important technology for M2M and IoT applications.

 This is due to the high bandwidth, reliability, and legacy of the technologies. Where

power is not a limiting factor, and high bandwidth is required, devices may connect

seamlessly to the Internet via Ethernet (IEEE 802.3) or Wi-Fi (IEEE 802.11).

 The IEEE 802.11 (Wi-Fi) standards continue to evolve in various directions to improve

certain operational characteristics depending on usage scenario.

 A widely adopted recent release was IEEE 802.11n, which was specifically designed to

enhance throughput (typically useful for streaming multimedia).

 Ongoing work such as IEEE 802.11ac is developing an even higher throughput version to

replace this, focusing efforts in the 5 GHz band.

 IEEE 802.11ah is allow a number of networked devices to cooperate in the ,1 GHz (ISM)

band.

 The idea is to exploit collaboration (relaying, or networking in other words) to extend

range, and improve energy efficiency (by cycling the active periods of the radio

transceiver).

 Bluetooth Low Energy (BLE; “Bluetooth Smart”) is designed for short-range (,50 m)

applications in healthcare, fitness, security, etc., where high data rates (millions of bits

per second) are required to enable application functionality.

 It is deliberately low cost and energy efficient by design, and has been integrated into the

majority of recent smart phones.

 Low-Rate, Low-Power Networks are another key technology that form the basis of the

IoT.

 For example, the IEEE 802.15.4 family of standards was one of the first used in practical

research and experimentation in the field of WSNs.

 Low-Rate Wireless Personal Area Networks (LR-WPAN)- It covered the Physical and

Medium Access Control layers, specifying use in the ISM bands at frequencies around

433 MHz, 868/915 MHz, and 2.4 GHz. This supported data rates of between 20 kbps up

to 256 kbps, depending on selected band, over distances ranging from tens of meters to

kilometers.

IV Unit – M2M and IoT Technology Fundamentals

17

 Radio duty cycling refers to managing the active periods of the Radio Frequency

Integrated Circuit (RFIC) during transmission, and listening to the medium.

 IEEE 802.15.4 defines the PHY layer, and in some instances the MAC layer, upon which

a number of low-energy communications specifications have been built. Namely, ZigBee.

 Recent developments, such as the PHY Amendment for Smart Utility Networks (SUN),

IEEE 802.15.4g, seek to extend the operational coverage of these networks up to tens of

kilometers in order to provide extremely wide geographic coverage with minimal

infrastructure.

 6LoWPAN (IPv6 Over Low Power Wireless Personal Area Networks) was developed

initially by the 6LoWPAN Working Group (WG) of the IETF as a mechanism to

transport IPv6 over IEEE 802.15.4-2003 networks.

 Specifically, methods to handle fragmentation, reassembly, and header compression were

the primary objectives.

 The WG also developed methods to handle address autoconfiguration, the hooks for

mesh networking, and network management.

 RPL (IPv6 Routing Protocol for Low Power and Lossy Networks) was developed by the

IETF Routing over Low Power and Lossy Networks (RoLL) WG.

 They defined Low Power Lossy Networks as those typically characterized by high data

loss rates, low data rates, and general instability.

 No specific physical or medium access control technologies were specified, but typical

links considered include PLC, IEEE 802.15.4, and low-power Wi-Fi.

 Typical use cases involve the collection of data from many (for example) sensing points,

nodes towards a sink, or alternatively, flooding information from a sink to many nodes in

the network.

 Thus, the well-known concept of a Directed Acyclic Graph (DAG) structure was

concentrated to a Destination Oriented DAG (DODAG) for the purposes of initial

development.

 The group defined a new ICMPv6 message, with three possible types, specific for RPL

networks.

 These include a DAG Information Object (DIO), that allows a node to discover an RPL

instance, configuration parameters and parents, a DAG Information Solicitation (DIS) to

allow requests for DIOs from RPL nodes, and Destination Advertisement Object (DAO),

used to propagate destination information upwards (i.e. towards the root) along the

DODAG (specific RPL details are available in RFC 6550 and related RFCs).

 The Trickle Algorithm is an important enabler of RPL message exchange.

 CoAP (Constrained Application Protocol) is being developed by the IETF Constrained

RESTful Environments (CoRE) WG as a specialized web transfer protocol for use with

severe computational and communication constraints typically characteristic of M2M and

IoT applications.

IV Unit – M2M and IoT Technology Fundamentals

18

4.3 Data management

4.3.1 Introduction

 In the era of M2M, where billions of devices interact and generate data at exponential

growth rates, data management is of critical importance as it sets the basis upon which

any other processes can rely and operate

 Some of the key characteristics of M2M data include:

• Big Data: Huge amounts of data are generated, capturing detailed aspects of the

processes where devices are involved.

• Heterogeneous Data: The data is produced by a huge variety of devices and is

itself highly heterogeneous, differing on sampling rate, quality of captured values,

etc.

• Real-World Data: The overwhelming majority of the M2M data relates to real-

world processes and is dependent on the environment they interact with.

• Real-Time Data: M2M data is generated in real-time and overwhelmingly can

be communicated also in a very timely manner.

• Temporal Data: The overwhelming majority of M2M data is of temporal

nature, measuring the environment over time.

• Spatial Data: Increasingly, the data generated by M2M interactions are not only

captured by mobile devices, but also coupled to interactions in specific locations,

and their assessment may dynamically vary depending on the location.

• Polymorphic Data: The data acquired and used by M2M processes may be

complex and involve various data, which can also obtain different meanings

depending on the semantics applied and the process they participate in.

• Proprietary Data: Up to now, due to monolithic application development, a

significant amount of M2M data is stored and captured in proprietary formats.

However, increasingly due to the interactions with heterogeneous devices and

stakeholders, open approaches for data storage and exchange are used.

• Security and Privacy Data Aspects: Due to the detailed capturing of

interactions by M2M, analysis of the obtained data has a high risk of leaking

private information and usage patterns, as well as compromising security.\

4.3.2 Managing M2M data

IV Unit – M2M and IoT Technology Fundamentals

19

 The data flow from the moment it is sensed (e.g. by a wireless sensor node) up to the

moment it reaches the backend system has been processed manifold (and often

redundantly), either to adjust its representation in order to be easily integrated by the

diverse applications, or to compute on it in order to extract and associate it with

respective business intelligence (e.g. business process affected, etc.).

 In Figure 5.5, we see a number of data processing network points between the machine

and the enterprise that act on the datastream (or simply forwarding it) based on their end-

application needs and existing context.

 Dealing with M2M data may be decomposed into several stages.

 Additionally, the degree of focus in each stage heavily depends on the actual usage

requirements put upon the data as well as the infrastructure.

4.3.2.1 Data generation

 Data generation is the first stage within which data is generated actively or passively

from the device, system, or as a result of its interactions.

 The sampling of data generation depends on the device and its capabilities as well as

potentially the application needs.

 Usually default behaviors for data generation exist, which are usually further

configurable to strike a good benefit between involved costs, e.g. frequency of data

collection vs. energy used in the case of WSNs, etc.

IV Unit – M2M and IoT Technology Fundamentals

20

4.3.2.2 Data acquisition

 Data acquisition deals with the collection of data (actively or passively) from the device,

system, or as a result of its interactions.

 The data acquisition systems usually communicate with distributed devices over wired or

wireless links to acquire the needed data, and need to respect security, protocol, and

application requirements.

 The nature of acquisition varies, e.g. it could be continuous monitoring, interval-poll,

event-based, etc.

 The frequency of data acquisition overwhelmingly depends on, or is customized by, the

application requirements (or their common denominator).

 The data acquired at this stage (for non-closed local control loops) may also differ from

the data actually generated.

 In simple scenarios, due to customized filters deployed at the device, a fraction of the

generated data may be communicated.

 Data aggregation and even on-device computation of the data may result in

communication of key performance indicators of interest to the application.

4.3.2.3 Data validation

 Data acquired must be checked for correctness and meaningfulness within the specific

operating context.

 This is usually done based on rules, semantic annotations, or other logic.

 The acquired data may not conform to expectations and data may be intentionally or

unintentionally corrupted during transmission, altered, or not make sense in the business

context.

 As real-world processes depend on valid data to draw business-relevant decisions

 Several known methods are deployed for consistency and data type checking;

 for example, imposed range limits on the values acquired, logic checks, uniqueness,

correct time-stamping, etc.

 In addition, semantics may play an increasing role here, as the same data may have

different meanings in various operating contexts, and via semantics one can benefit while

attempting to validate them.

 Another part of the validation may deal with fallback actions such as requesting the data

again if checks fail, or attempts to “repair” partially failed data.

 Failure to validate may result in security breaches.

 Tampered-with data fed to an application is a well known security risk as its effects may

lead to attacks on other services, privilege escalation, denial of service, database

corruption, etc.

IV Unit – M2M and IoT Technology Fundamentals

21

4.3.2.4 Data storage

 The data generated by M2M interactions is what is commonly referred to as “Big Data.”

 Machines generate an incredible amount of information that is captured and needs to be

stored for further processing.

 As this is proving challenging due to the size of information, a balance between its

business usage vs. storage needs to be considered; that is, only the fraction of the data

relevant to a business need may be stored for future reference.

 However, one has to carefully consider what the value of such data is to business not only

in current processes, but also potentially other directions that may be followed in the

future by the company as different assessments of the same data may provide other,

hidden competitive advantages in the future.

 Due to the massive amounts of M2M data, as well as their envisioned processing (e.g.

searching), specialized technologies such as massively parallel processing DBs,

distributed file systems, cloud computing platforms, etc. are needed.

4.3.2.5 Data processing

 Data processing enables working with the data that is either at rest (already stored) or is

in-motion (e.g. stream data).

 The scope of this processing is to operate on the data at a low level and “enhance” them

for future needs.

 Typical examples include data adjustment during which it might be necessary to

normalize data, introduce an estimate for a value that is missing, re-order incoming data

by adjusting timestamps, etc.

 Similarly, aggregation of data or general calculation functions may be operated on two or

more data streams and mathematical functions applied on their composition.

 Another example is the transformation of incoming data; for example, a stream can be

converted on the fly (e.g. temperature values are converted from _F to _C), or repackaged

in another data model, etc. Missing or invalid data that is needed for the specific time-slot

may be forecasted and used until, in a future interaction, the actual data comes into the

system.

4.3.2.6 Data remanence

 Even if the data is erased or removed, residues may still remain in electronic media, and

may be easily recovered by third parties _ often referred to as data remanence.

 Several techniques have been developed to deal with this, such as overwriting,

degaussing, encryption, and physical destruction.

 For M2M, not only the DBs where the M2M data is collected, but also the points of

action, which generate the data, or the individual nodes in between, which may cache it.

IV Unit – M2M and IoT Technology Fundamentals

22

 At the current technology pace, those buffers (e.g. on device) are expected to be less at

risk since their limited size means that after a specific time has elapsed, new data will

occupy that space; hence, the window of opportunity is rather small.

 In addition, for large-scale infrastructures the cost of potentially acquiring “deleted” data

may be large; hence, their hubs or collection end-points, such as the DBs who have such

low cost, may be more at risk.

4.3.2.7 Data analysis

 Data available in the repositories can be subjected to analysis with the aim to obtain the

information they encapsulate and use it for supporting decision-making processes.

 The analysis of data at this stage heavily depends on the domain and the context of the

data.

 For instance, business intelligence tools process the data with a focus on the aggregation

and key performance indicator assessment.

 Data mining focuses on discovering knowledge, usually in conjunction with predictive

goals.

 Statistics can also be used on the data to assess them quantitatively (descriptive statistics),

find their main characteristics (exploratory data analysis), confirm a specific hypothesis

(confirmatory data analysis), discover knowledge (data mining), and for machine

learning, etc.

 This stage is the basis for any sophisticated applications that take advantage of the

information hidden directly or indirectly on the data.

4.3.3 Considerations for M2M data

 The M2M infrastructure in place heavily depends on real-world processes, implying also

that a big percentage of data will be generated by machines that interact with the real-

world environment, while the rest will be purely virtual data.

 Many of the machines generating this data, which can then be communicated to others

(e.g. analytics specialists).

 The end-beneficiaries might acquire information, but do not necessarily need to have

access or to process the data by themselves.

 There is a rise of specialists in the various stages of M2M data management that will

cooperate with application providers, users, etc. for the common benefit.

 Sharing of data and usage in multiple applications, security and trust are of key

importance.

 Security is mandatory for enabling confidentiality, integrity, availability, authenticity,

and nonrepudiation of data from the moment of generation to consumption.

 Due to the large-scale IoT infrastructure, heterogeneous devices, and stakeholders

involved, this will be challenging.

IV Unit – M2M and IoT Technology Fundamentals

23

 In addition, trust will be another major issue, as even if data is securely communicated or

verified, the level of trust based on them will impact the decision-making process and

risk analysis.

 Managing security and trust in the highly federated M2M-envisioned infrastructures

poses a significant challenge, especially for mission critical applications that also exercise

control.

 Privacy is also expected to be a significant issue in IoT infrastructures.

 Currently, a lot of emphasis is put on acquiring the data, and no real solutions exist for

large-scale systems to share data in a controlled way.

 Once data is shared, the originator has no more control over its lifetime.

 A typical example here constitutes the usage of private citizen data, which could be

controllably shared as wished; it should also be possible to (partially) revoke that right at

will.

 Data Science in the IoT era is a cross-discipline approach building on mathematics,

statistics, high-performance computing, modeling, machine learning, engineering, etc.

that will play a key role in understanding the data, assessing their information at large

scale, and hopefully enabling the better studying of complex systems of systems and their

emergent characteristics.

4.3.4 Conclusions

 Data and its management hold the key to unveiling the true power of M2M and IoT.

 To do so, however, we have to think and develop approaches that go beyond simple data

collection, and enable the management of their whole lifecycle at very large scale, while

in parallel considering the special needs and the usage requirements posed by specific

domains or applications.

4.4 Business processes in IoT

4.4.1 Introduction

 A business process refers to a series of activities, often a collection of interrelated processes

in a logical sequence, within an enterprise, leading to a specific result.

 There are several types of business processes such as management, operational, and

supporting, all of which aim at achieving a specific mission objective.

 As business processes usually span several systems and may get very complex, several

methods and techniques have been developed for their modeling, such as the Business

Process Model and Notation (BPMN), which graphically represents business processes in a

business process model.

IV Unit – M2M and IoT Technology Fundamentals

24

 Several key business processes in modern enterprise systems heavily rely on interaction with

real-world processes, largely for monitoring, but also for some control (management), in

order to take business-critical decisions and optimize actions across the enterprise.

 In Figure 5.6, the dramatic reduction of the data acquisition from the real world

 Initially all these interactions were human-based (e.g. via a keyboard) or human-assisted

(e.g. via a barcode scanner); however, with the prevalence of RFID, WSNs, and advanced

networked embedded devices, all information exchange between the real-world and

enterprise systems can be done automatically without any human intervention and at

blazing speeds.

 In the M2M era, connected devices can be clearly identified, and with the help of

services, this integration leads to active participation of the devices to the business

processes.

 Existing modeling tools are hardly designed to specify aspects of the real world in

modeling environments and capture their full characteristics. To this direction, the

existence of SOA-ready devices

IV Unit – M2M and IoT Technology Fundamentals

25

 (i.e. devices that offer their functionalities as a web service) simplifies the integration and

interaction as they can be considered as a traditional web service that runs on a specific

device.

 A layered approach for developing, deploying, and managing WSN applications that

natively interact with enterprise information systems such as a business process engine

and the processes running therein is proposed and assessed.

 M2M and IoT empower business processes to acquire very detailed data about the

operations, and be informed about the conditions in the real world in a very timely

manner.

4.4.2 IoT integration with enterprise systems

 M2M communication and the vision of the IoT pose a new era where billions of devices

will need to interact with each other and exchange information in order to fulfill their

purpose.

IV Unit – M2M and IoT Technology Fundamentals

26

 In Figure 5.7, cross-layer interaction and cooperation can be pursued:

• at the M2M level, where the machines cooperate with each other

(machine-focused interactions)

• at the machine-to-business (M2B) layer, where machines cooperate also

with network-based services, business systems (business service focus),

and applications.

 Several devices in the lowest layer. These can communicate with each other over short-

range protocols (e.g. over ZigBee, Bluetooth), or even longer distances (e.g. over Wi-Fi,

etc.).

 Some of them may host services (e.g. REST services), and even have dynamic discovery

capabilities based on the communication protocol or other capabilities (e.g. WS-Eventing

in DPWS).

 Some of them may be very resource constrained, which means that auxiliary gateways

could provide additional support such as mediation of communication, protocol

translation, etc.

 Independent of whether the devices are able to discover and interact with other devices

and systems directly or via the support of the infrastructure, the M2M interactions enable

them to empower several applications and interact with each other in order to fulfill their

goals.

 Promising real-world integration is done using a service-oriented approach by interacting

directly with the respective physical elements, for example, via web services running on

devices (if supported) or via more lightweight approaches such as REST.

 Many of the services that will interact with the devices are expected to be network

services available, for example, in the cloud.

 The main motivation for enterprise services is to take advantage of the cloud

characteristics such as virtualization, scalability, multi-tenancy, performance, lifecycle

 management, etc.

 A key motivator is the minimization of communication overhead with multiple endpoints

by, for example, transmission of data to a single or limited number of points in the

network, and letting the cloud do the load balancing and further mediation of

communication.

 Content Delivery Network (CDN) can be used in order to get access to the generated data

from locations that are far away from the M2M infrastructure (geographically, network-

wise, etc.).

 To this end, the data acquired by the device can be offered without overconsumption

 of the device’s resources, while in parallel, better control and management can be

applied.

4.4.3 Distributed business processes in IoT

IV Unit – M2M and IoT Technology Fundamentals

27

 In Figure 5.9, the integration of devices in business processes merely implies the

acquisition of data from the device layer, its transportation to the backend systems, its

assessment, and once a decision is made, potentially the control (management) of the

device, which adjusts its behavior.

 In future, due to the large scale of IoT, as well as the huge data that it will generate, such

approaches are not viable.

 Enterprise systems trying to process such a high rate of non- or minor-relevancy data will

be overloaded.

 The first step is to minimize communication with enterprise systems to only what is

relevant for business. With the increase

 in resources (e.g. computational capabilities) in the network, and especially on the

devices themselves (more memory, multi-core CPUs, etc.), it makes sense not to host the

intelligence and the computation required for it only on the enterprise side, but actually

distribute it on the network, and even on the edge nodes (i.e. the devices themselves), as

depicted on the right side of Figure 5.9.

IV Unit – M2M and IoT Technology Fundamentals

28

 Partially outsourcing functionality traditionally residing in backend systems to the

network itself and the edge nodes means we can realize distributed business processes

whose sub-processes may execute outside the enterprise system.

 As devices are capable of computing, they can either realize the task of processing and

evaluating business relevant information they generate by themselves or in clusters.

 Business processes can bind during execution of dynamic resources that they discover

locally, and integrate them to better achieve their goals.

4.4.4 Considerations

 Existing tools and approaches need to be extended to the make the business processes IoT

aware.

 Distributed execution of processes exists (e.g. in BPMN), additional work is needed to be

able to select the devices in which such processes execute and consider their

characteristics or dynamic resources, etc.

 The dynamic aspect is of key importance in the IoT, as this is mobile and availability is

not guaranteed, which means that availability in modeling time does not guarantee

availability at runtime and vice-versa.

 Scalability is an aspect that needs to be considered in the business process modeling and

execution.

 In addition, event-based interactions among the processes play a key role in IoT, as a

business process flow may be influenced by an event, or as its result, trigger a new event.

4.4.5 Conclusions

 Modern enterprises operate on a global scale and depend on complex business processes.

 Efficient information acquisition, evaluation, and interaction with the real world are of

key importance.

 The infrastructure envisioned is a heterogeneous one, where millions of devices are

interconnected, ready to receive instructions and create event notifications, and where the

most advanced ones depict self-behavior (e.g. self-management, self-healing,

selfoptimization, etc.) and collaborate.

 Business logic can now be intelligently distributed to several layers such as the network,

or even the device layer, creating new opportunities, but also challenges that need to be

assessed.

 Future Enterprise systems will be in position to better integrate state and events of the

physical world in a timely manner, and hence to lead to more diverse, highly dynamic,

and efficient business applications.

IV Unit – M2M and IoT Technology Fundamentals

29

4.5 Everything as a service (XaaS)

 Cloud computing is a model for enabling ubiquitous, on-demand network access to a

shared pool of configurable computing resources (e.g. networks, servers, storage,

applications, and services) that can be provisioned, configured, and made available with

minimal management effort or service provider interaction.

 All applications need access to three things: compute, storage, and data processing

capacities.

 With cloud computing, a fourth element is added _ distribution services _ i.e. the manner

in which the data and computational capacity are linked together and coordinated.

Characteristics of cloud computing

 On-Demand Self-Service.

A consumer can unilaterally provision computing capabilities, such as server time

and network storage, as needed, or automatically, without requiring human

interaction with each service provider.

 Broad Network Access.

Capabilities are available over the network and accessed through standard

mechanisms that promote use by heterogeneous thin or thick client platforms (e.g.

mobile phones, tablets, laptops, and workstations).

 Resource Pooling.

The provider’s computing resources are pooled to serve multiple consumers using

a multi-tenant model, with different physical and virtual resources dynamically

IV Unit – M2M and IoT Technology Fundamentals

30

assigned and reassigned according to consumer demand. Examples of resources

include storage, processing, memory, and network bandwidth.

 Rapid Elasticity.

Capabilities can be elastically provisioned and released, in some cases

automatically, to scale rapidly outward and inward commensurate with demand.

 Measured Service.

 Cloud systems automatically control and optimize resource use by leveraging a

metering capability, at some level of abstraction, appropriate to the type of

service (e.g. storage, processing, bandwidth, and active user accounts).

 Resource usage can be monitored, controlled, and reported, providing

transparency for both the provider and consumer of the utilized service.

For M2M and IoT, these infrastructures provide the following:

1. Storage of the massive amounts of data that sensors, tags, and other “things” will produce.

2. Computational capacity in order to analyze data rapidly and cheaply.

3. Over time, cloud infrastructure will allow enterprises and developers to share datasets,

allowing for rapid creation of information value chains.

lOT Physical Devices &Endpoins 178

7.1 What is an loT Device

As descriled carlier, a "Thing" in Internet of Things (lo'lT) can be any object tha h

identifier and which can send/receive data (including user data) over a network (e

sman
terne

connected to the
phone. simart TV, computer. refrigerator, car, etc.). lol devices are connecter

nsel and send information about themselves or about their surroundings (e.g. information

nples of
by the connected sensors) over a network (to other devices or servers/storage.

actuation upon the physical entities/environment around them remotely. Some exa

loT devices are listed below
A home automation device that allows remotely monitoring the status of applian

andcontrolling the appliances.
An industrial machine which sends information abouts its operation and healit

monitoring data t0 a server.

A car which sends information about its location to a cloud-based service.
A wireless-enabled wearable device that measures data about a person such as the

liance

number of steps walked and sends the data to a cloud-based service.

7.1.1 Basic building blocks of an loT Device

An loT device can consist of a number of modules based on functional attributes, suchas

Sensing: Sensors can be either on-board the loT device or attached to the device. lt

device can collect various types of information from the on-board or attached sensors
such as temperature, humidity, light intensity, etc. The sensed information can *

communicated either to other devices or cloud-based servers/storage.
.Actuation: loT devices can have various types of actuators attached that allow takin

actions upon the physical entities in the vicinity of the device. For example. a

switch connected to an lof device can turn an appliance on/off based on the comman
sent to the device.

Communication: Communication modules are responsible for sending collecc
to other devices or cloud-based servers/storage and receiving data from other ue
and commands from remote applications

Analysis & Processing: Analysis and processing modules are responsible io r makin

sense of the collected data.

The representative loT device used for the examples in this book is the wi single-board mini computer called Raspberry Pi (explained in later sections).
Raspberry Pi is intentional since these devices are widely accessible, inexpn the available from muluple vendors. Furthermore, extensive information is availaoh programming and use both on the Internet and in other textbooks. The principles

and

2015

Bahga & Madisetti,

7.2
Exemplary Device: Raspberry Pi

179

ok are just as applicabl just as applicable to other (including proprietary) loT endpoints, in addition to
Pi. Before we look at the specifics of Raspherry Pi, let us first look at the building

Rsphery

blocks of a generic síngle-bOard computer (SBC) based lo'T device.

Figure 7.1 shows a generie block diagram of a single-board computer (SBC) base Figur

loT device that inclu that includes CPU, GPU, RAM, storage and various types of interfaces and

peripherals.

Connectivity Processor Graphics Audio/Video
USB Host

CPU GPU HDMI

RJ45/Ethernet 3.5mm audio

RCA video

nterconnect

Interfaces Storage lntertaces Memory Interfaces

UART SD NAND/NOR

SPI MMC DDR1/DDR2/DDR3
AR2883

2C SDIO

CAN

Figure 7.1: Block diagram of an IoT Device

2 Exemplary Device: Raspberry Pi

aspberry Pi [104] is a low-cost mini-computer with the physical size of a credit card.

ETy Pi runs various flavors of Linux and can perform almost all tasks that a normal

top computer can do. In addition to this, Raspbery Pi also allows interfacing sensors

CTuators through the general purpose /O pins. Since Raspberry Pi runs Linux operating

stem, it supports Python "out of the box".

ernet of Things - A Hands-On Approach

ndpeiv loT Plysical Dovices &

7.3 About the Board

beled Figun shows the Riasptery P'i bnd witlh the vilfious ¢o110ents/periphera. L.

.Processor & RAM: Raspbcry P'i is bAScd on an ARM proCessor. The lalest erin

Raspbeny Pi (Model B, Revision 2) cones with 700 MHz Low Power ARMIU. Power ARMI17617.
pawessor and S12 NMB SDRAM.

.iSB Ports: Raspherry Pi comes with two USB 2.0 ports. The USB ports on Rasphe bey
Pi can prov ide a cunTent upto l00mA. For connecting devices that draw current

than 100mA. an external USB powered hub is required.

Ethernet Ports: Raspberry Pi conmes with a standard RJ45 Ethernet port. You ca

connect an Ethernet cable or a USB Wifi adapter to provide Internet connectivity

HDMI Output : The HDMI port on Raspberry Pi provides both video and audio
output. You can connect the Raspberry Pi to a monitor using an HDMI ca

monitors that have a DVI port but no HDMI port, you can use an HDMI to DVI

adapter/cable.
.Composite Video Output : Raspberry Pi comes with a composite video output with

an RCA jack that supports both PAL and NTSC video output. The RCA jack can be

used to connect old televisions that have an RCA input only.
Audio Output: Raspberry Pi has a 3.5mm audio output jack. This audio jack is u
for providing audio output to old televisions along with the RCA jack for video.

audio quality from this jack is inferior to the HDMI output

GPIO Pins: Raspberry Pi comes with a number of general purpose input/ouput pins
Figure 7.3 shows the Raspberry Pi GPlO headers. There are four types of pins on

Raspberry Pi- true GPIO pins, 12C interface pins, SPI interface pins and serial Rx ad

Tx pins.

Display Serial Interface (DSI) : The DSI interface can be used to connect an LD

panel to Raspberry Pi.

Camera Serial Interface (CS): The CSI interface can be used to connect a came

module to Raspberry Pi.
.Status LEDs: Raspberry Pi has five status LEDs. Table 7.1 lists Raspberry Pi stau

LEDs and their functions
SD Card Slot: Raspberry Pi does not have a built in operating system and stors

You can plug-in an SD card loaded with a Linux image to the SD card slot. Appendik
provides instructions on setting up New Out-of-the-Box Software (NOOB5
Raspberry Pi. You will require atleast an 8GB SD card for setting up NOOBS.

Power Input: Raspberry Pi has a micro-USB connector for power input.

5

Bahga & Madisetti, 20

74 Linux on Raspberry Pi

181
Status LED Function
ACT SD card access
PWR .3V Power is present
FDX Full duplex LAN connected
LNK Link/Network activity
100 100 Mbit LAN connected

Table 7.1: Raspberry Pi Status LEDs

RCA Video

Audio Jack GPIO Headers

Status LEDs

DSI Connector

Display

USB 2.0 SD Card

Slot

Ethernet Micro USB

Power

CSI Connector
HDMI

Camera

Figure 7.2: Raspberry Pi board

7.4 Linux on Raspberry Pl

spberry Pi supports various flavors of Linux including:
Raspbian Raspbian Linux is a Debian Wheezy port optimized for Raspberry Pi. This

1S the recommended Linux for Raspberry Pi. Appendix-I provides instructions on

Setting up Raspbian on Raspberry P.

Arch: Arch is an Arch Linux port for AMD devices.
Pidora: Pidora Linux is a Fedora Linux optimized for Raspberry Pi.

aspBMC : RaspBMC is an XBMC media-center distribution for Raspberry Pi.

DenELEC: OpenELEC is a fast and user-friendly XBMC media-center distribution.
R : RISC OS is a very fast and compact operating system.

Internet of Things A Hands-On Approach

OT Physical Devices &Eni

182

3V3

GPIO 2 (12c 5DA)

GPiO 3 (12C sDL)
GROUND

GPIO 4O GPIO 14 (UART TO) GROUND
GPIO 15 (UART RxD) GPIO 17
GPIO 18

GPIO 27
GROUND

GPIO 22
GPIO 23

3V3
GPIO 24

GPIO 10(SPIO MOSI) Ground
GPIO 9(SPIO MISO)

GPIO 25

O
VU

GPIO 11 (5PIO SCLK) GPIO 8 (SPIO CEO N)
GROUND O GPIO 7 (SPIO CEI N)

Figure 7.3: Raspberry Pi GPIO headers

E

OCR

Figure 7.4: Rasbian Linux desktop

C)_"

Bahga & Madiset.

4 Linux on Raspberry Pi
4

183

*

Figure 7.5: File explorer on Raspberry Pi

;31

g:1/wm aiet.rg

Figure 7.6: Console on Raspberry Pi

riternet of Things -A Hands-On Approac

hysical Devices a

Devices & Etn

dkfpa

e tet Dewnia ad By Codec Forum FAG

Downioads

New Out Of Box Software
(Recommended)
w* acommend tha firct t*n Si ytars start bry serat te arrg and gt aling Ne Cat e Rov 5otrarn {*3AS} onte a RGR for iarger) t) card. or y:bnt. ths erese ts yms t b a hoe n oyorating syst erns 1o iret , ncheng ranpea Prdora and turo favours of XpAC oree you hære net niind operatng tyct em. yoiu ean retun to tha NOO rterface by n ding dram sht d.rmg boot. thrt alowt yots to sut ch to a ferent Heatino system, t trereite a toerus1t ed card wth a fresh instal if te ert

ay detah COBS wl output over HOM at your displays preferred resohson, even f no MEMI dsplay is connected. f you do not s4e any oxtpt on your HO dspiay or are usrg the corngposte output, press 1
2.3 o 4 n your keyboard to select HOM preterred mode, HOMI Sate

Figure 7.7: Browser on Raspberry Pi

Rasp Set up Option

ange User PassWord
Erab ie Boot to De sktop/I5cratch Choose whetherto boot into a da nternationalisation opt ions Set up language arnd regional sett
Tebi arnera
P.dd to Rastrac.
Verc iock

8 Advnced 9pt 1on 9 Pbout raspicon f ig

nanga passuord for the default

Enabie this Pi to workwith Ehe R hdd th is Pi to the online Ranpber Contigure overclock ing for you Conf igure adyennced BeEting intormat ion about Ehia conEigurat
S1ct>

<Einiah

Figure 7.8: Raspberry Pi configuration tool

the default file explorer on Raspbian. Figure 7.6 shows the default cohe rasp

75 s
Figure 7,4 shows the Raspbian Linux desktop on Raspberry P1. nRs Figure 7.7 shows the default browser on Raspbian. To configure Raspberry 1s sho

tool is used which can be launched from command line as (Sraspl-co SD

as show

Figure 7.8. Using the configuration tool you can expand root partition Split
I SD car

Aspi the raspi-

keyboard layout, change password, set locale and timezone, change me
split. e

74 Linux on Raspberry Pi

isable SSH server and change boot behavior. It is recommended to expand the root

185
l Stem so that you can use the entire space on the SD card. gh Raspbemy Pi

NC connection or SSH. This does away with the need fora separate display

comes with an HDMI output. it is more convenient to access the
e em Fi and you can use Raspberry Pi from your desktop or laptop computer

evie uith a VN

ndi-A provides mstrucuons on setting up VNC server on Raspberry Pi and the

instrutio ri ans to connect to RaspberTy Pi with SSH. Table 7.2 lists the frequently used
ommands on Raspberry Pi.

Command Function
Example cd Change directory ed /homelpi

cat Show file contents
cat file.txNt

Is List files and folders Is home/pi
locate Search for a file locate tile.txt
Isusb List USB devices Isusb

Print name of present working Dw
directory
Make directory

pwd pwd

mkdir mkdir /home/pi/new

Move (rename) file mv sourceFile.txt destinationFile.txt mv

Tm Remove file m file.txt

reboot Reboot device sudo reboot

shutdownShutdown device sudo shutdown -h now

grep Print lines matching a patterm grep -r "pi" /home/

df Report file system disk space df-Th

usage
ifconfig Configure a network interface

connections,

ifconfig

Print network netstat-intp
netstat

routing tables, interface statistics
tar -xzf foo.tar.gz

tar Extract/create archive
network wget http://example.com/tile.targz

wget Non-interactive

downloader

Table 7.2: Raspberry Pi frequently used commands

or Things A Hands-On Approach

lOT Physical evices& Endo ndpoirns 186

7.5 Raspberry Pi Interfaces

Figure 7.3, Raspberry Pi has serial, SPI and 12C intertaces for data transter as shown in Fion

7.5.1 Serial

The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for comm.

with serial peripherals.
ommunicatn

7.5.2 SPI
Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicatino

with one or more peripheral devices. In an SPI connection, there is one master device a
one or more peripheral devices. There are five pins on Raspberry Pi for SPI interface:

.MISO (Master In Slave Out) Master line for sending data to the peripherals.

MOSI (Master Out Slave In): Slave line for sending data to the master.

SCK (Serial Clock): Clock generated by master to synchronize data transmission
.CEO (Chip Enable 0): To enable or disable devices.
.CEO (Chip Enable 1): To enable or disable devices.

ating

7.5.3 12C
The 12C interface pins on Raspberry Pi allow you to connect hardware modules. 12C intetace

allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line

7.6 Programming Raspberry Pi with Python
In this section you will learn how to get started with developing Python prograis Raspberry Pi. Raspberry Pi runs Linux and supports Python out of the box. Therefore. yo
can run any Python program that runs on a normal computer. However, it is the genet
purpose input/output capability provided by the GPIO pins on Raspberry Pi that make> useful device for Internet of Things. You can interface a wide variety of sensor and actu with Raspberry Pi using the GPIO pins and the SPI, 12C and serial interfaces. Input from

the

sensors connected to Raspberry Pi can be processed and various actions can be taket
for

instance, sending data to a server, sending an email, triggering a relay switch.

7.6.1 Controlling LED with Raspberry Pi
Let us start with a basic example of controlling an LED from Raspberry Pi. Figure 7.
the schenmalic diagram of connecting an LED to Raspberry Pi. Box 7.1 shows how show

turn

Bahga & Madisetti,
2015

ramming Haspberry Pi with ython

connect

the LED to any other GPIO pin as well.
es the RPi. GPIO module to control the CGPIO on Raspherry Pi. In

76 Program

187

ED on/ofl
om

command line. In his example the LED is connected to CPIO pin 18.

LED on/ofr

m can

Box
7.2

shows a Python program for blinking an 1LED connected to Raspherry Pi every

thrs

program
we set pin 18.

lay
ot

one

second,

nd. The
program

usesth

18 direction to output and then write T ruelFalse alternatively after a

3V3 SV

DSI DISPLAY A6ND

22GND

no31GND

GNDc
GP10

OK
PUR

FDX
NK

10n1

Figure 7.9: Controlling LED with RaspberryPi

Box 7.1: Switch
ching LED on/off from

Raspberry
Pi console

sys/class/gpio/export

ys/class/gpio/gpiol
pin 18 direct ion to Out Ser

0t direct10n

arn LED on
echo1 value

of Thing - A Hands-On Approach
teno

&ta
Turn LED Off

$echo >value

Box 7.2: Python program for blinking LED

import RPi.CPIO as GP IO
import time

GPIO.setmode (GPIO.BCM)
GP10.setup (18, GPIO.OUT)

while True:

GPIO.out put (18, True)
time.s leep (1
GPIO.output (18, False)
time.sleep (1)

7.6.2 Interfacing an LED and Switch with Raspberry Pi
Now let us look at a more detailed example involving an LED and a switch that is used e control the LED.

Figure 7.10 shows the schematic diagram of connecting an LED and switch to Rasphen Pi. Box 7.3 shows a Python program for controlling an LED with a switch. In this examp the LED is connected to GPIO pin 18 and switch is connected to pin 25. In the infinite W loop the value of pin 25 is checked and the state of LED is toggled if the switch is pres
Ssed

This example shows how to get input from GPIO pins and process the input and take s action. The action in this example is toggling the state of an LED. Let us look at an

ome

example. in which the action iS an email alert. Box 7.4 shows a Python program for se

other

an email on switch press. Note that the structure of this program is similar to the prog Box 7.3. This program uses the Python SMTP library for sending an email when the

ding

connected to Raspberry Pi is pressed.

Box 7.3: Python program for controlling an LED with a switch
from time import leep
import RPi.GP IO as GPIO

GPIO.setmode (GPI0.BCM)

Bahga& Madisetti.

:6 Programming Raspberry Pi with Python

Sviteh Pin

.setuP
(, GP TO. IN)

189

SD Pin

PE.set up (i8, F io.oUT

state faise

e tolelED ipin):
state net state

.output (pi n, state)

GPIC.input (25) == True) :

goleteD (pin)
sieep

Except ybeardInterrupt:
exit

SPA

H

C.0: Interfacing LED and switch with Raspbetry
n

\iternet of Things
hings- A Hands-On Approachn

190
es & ENdpointe

Box 7.4: Python prograiu for sending an email on switch press

ii 3i}

y OEt Xit

124 nt à31 r ceipient-email>'

ist

sub ject 'iello'

essye Switch pressed on Raspberry Pi'

5eriame Gmail-username>'

passwOrd <pasSWord>
Server = smtp.gmail.com: 587'

GPIO.set mode (GP IO .BCM)

GP I0.setup (25, GPIO. IN)

def sendema il (from_addr, to_addr1ist, cc_addr_Llist,

Sub ject, message,

1ogin, pass word,
smtpserver)

header = 'From: sn' fr om_addr
S n'% ,' . join (to_addr_list)
%sn' ','.join (cc_addr_list)

header += To:
header t ' Cc:

header += 'Subject: %s \n n' subject

me s sage fheader+ meSsage

Ser ver Smtplib, SMTP (smtpserver)
Server. startt 1s ()
SErver, 10gin (1ogin, password)

probiems server. sendmail (from_addr, to_addrlist, message

s Ver.quit)

whiie True:

try:
if (GP10, input (25) True);

sendenail (fromena il, r eceipient sist,
CCIist, ub ject, ne s sage,
u8eriänG, pässword, serve)

1eep(.01)

2015

Bahga & Madisetti, ©

Win Python 26 Progra

191 exce
exit ()

ot Keyboarainterrupt:

63 Interfacing a Light Sensor (LDR) with Raspberry Pi
So far you have learned how to interface LED and switch with Raspberry Pi. Now let us
turning

an LED on/off based on the light-level sensed.

f LDR to 3.3V and other side to a 1uF capacitor and also to a GPIO pin (pin 18 in

ok at an example of interfacing a Light Dependent Resistor (LDR) with Raspberry Pi and rut
ure 7.11 shows the schema diagram of connecting an LDR to Raspberry Pi. Connect

this example). An L
ne S An LED is connected to pin 18 which is controlled based on the light-level S7sed.

Ra 7.5 shows the Python program for the LDR example. The readLDR() function ms COunt which is proportional to the light level. In this function the LDR pin is set a attnut and low and then to input. At this point the capacitor starts charging through the esistor (and a counter is started) until the input pin reads high (this happens when capacitoroltage becomes greater than 1.4V). The counter is stopped when the input reads high. The final count is proportional to the light level as greater the amount of light, smaller is the LDR
resistance and greater is the time taken to charge the capacitor.

Box 7.5: Python program for switching LED/Light based on reading LDR reading

mport RPi.GPIO as GPIO

miport time

GPI0.setmode (GPIO. BCM
dr_threshold = 1000
LDR_PIN = 18

LIGHT_PIN = 25

0ef readLDR (P IN): reading=0
PIO.setup (LIGHT_PIN, IO.OUT)

GPIO.out put (PIN, False)
time.sleep (0.1)

10.setup (PIN, GPIO. IN)
while (GPIO. input (PIN) ==False):

reading=readingtl Teturn reading

nternet of Things- A Hands-On Approach

MUOC

192

adin eadi.D: (LU_IN)
dr_teading 1dr_threshoid:

SwitchonLigit (1.IGHT_PI!N)

tiight (L1GHTPIN)

tme,sieep(1)

3VESV

ET 1ISPLAY

GN

Figure 7.11: Interfacing LDR with Raspberry Pi

AMadisetti.

The transport layer protocols provide end-to-end message
transter capability independent

of the underlying network. The message transfer capability can be set up on connections.

either using handshakes (as in TCP) or without handshakes/acknowledgements (as in UDP).

The transport layer provides functions such as error control, segmentation, flow control and

congestion control.

TCP: Transmission Control Protocol (TCP) is the most widely used transport layer
protocol, that is used by web browsers (along with HTTP, HTTPS application layer
protocols), email programs (SMTP application layer protocol) and file transfer (FTP).
TCP is a connection oriented and stateful protocol. While IP protocol deals with
sending packets, TCP ensures reliable transmission of packets in-order. TCP also
provides error detection capability so that duplicate packets can be discarded and lost packets are retransmitted. The flow control capability of TCP ensures that

Transport Layer

Bahga &Madisetti, © 2015

which the sender sends the data is not to0o high for the receiver to process. The congestion control capability of 'TCP helps in avoiding network congestion and angestion collapse which can lead to degradation of network performance. TCP is
described in RFC 793 191.

IPUnlike TCP, which requires carrying out an initial setup procedure, UDP is a tionless protocol. UDP is useful for time-sensitive applications that have veryemall data units to exchange and do not want the overhead of connection setup. UDP

is a transaction oriented and stateless protocol. UDP does not provide guaranteed
delivery, ordering of messages and duplicate climination. Higher levels of protocols

can ensure reliable delivery or cnsuring connections created are reliable. UDP is
described in RFC 768 [10].

Application Layer

Anplication layer protocols define how the applications interface with the lower layer

nrotocols to send the data over the network. The application data, typically in files, is

encoded by the application layer protocol and encapsulated in the transport layer protocol

which provides connection or transaction oriented communication over the network. Port

numbers are used for application addressing (for example port 80 for HTTP, port 22 for SSH,

etc.). Application layer protocols enable process-to-process connections using ports.

HTTP : Hypertext Transfer Protocol (HTTP) is the application layer protocol that

forms the foundation of the World Wide Web (Www). HTTP includes commands

such as GET, PUT, POST, DELETE, HEAD, TRACE, OPTIONS, etc. The protocol

follows a request-response model where a client sends requests to a server using the

HTTP commands. HTTP is a stateless protocol and each HTTP request is independent

of the other requests. An HTTP client can be a browser or an application running

on the client (e.g., an application running on an IoT device, a mobile application or

other software). HTTP protocol uses Universal Resource Identifiers (URIs) to identify

HTTP resources. HTTP is described in RFC 2616 [11].

CoAP: Constrained Application Protocol (CoAP) is an application layerprotocol for

machine-to-machine (M2M) applications, meant for constrained environments with

Constrained devices and constrained networks. Like HTTP, CoAP is a web transfer

ProtDcol and uses a request-response model, however it runs on top of UDP instead of

TCP. CoAP uses a client-server architecture where clients communicate with servers

connectionless datagrams, CoAP is designed to easily interface with HTTP

KC HITP, CoAP supports methods such as GET, PUT, POST, and DELETE. CoAP

Specifications are available on IEFT Constrained
environments (CoRE) Working

Group website [12].

rnet of Things- A Hands-On Approacn

.WebSocket: WebSocket prvtocol allows full-duplex communication over a single

socket connection for sending essages between client and server. WebSocket is

based on TCP and allows streanms of messages to be sent back and forth between the

client and server while keeping the TCP conncction open. The client can be a browser.

a mobile application or an loT device. WebSocket is described in RFC 6455 [13].

MQTT: Message Queue Telemetry Transport (MQTT) is a light-weight messaging

prowol based on the publish-subscribe model. MQTTuses a client-server architecture

where the client (such as an loT device) connects to the server (also called MQTT
Broker) and publishes messages to topies on the server. The broker forwards the

messages to the clients subseribed to topies. MQTT is well suited for constrained

environments where the devices have limited processing and memory resources

and the network bandwidth is low. MQTT specifications are available on IBM

developerWorks [14].
XMPP: Extensible Messaging and Presence Protocol (XMPP) is a protocol for
real-time communication and streaming XML data between network entities. XMPP
powers wide range of applications including messaging, presence, data syndication,

gaming, multi-party chat and voice/video calls. XMPP allows sending small chunks
of XML data from one network entity to another in near real-time.

decentralized protocol and uses a client-server architecture. XMPP supports both
client-to-server and server-to-server communication paths. In the context of loT,
XMPP allows real-time communication between IoT devices. XMPP is described in

XMPP s a

RFC 6120 [15].
DDS: Data Distribution Service (DDS) is a data-centric middleware standard for device-to-device or machine-to-machine communication. DDS uses a publish-subscribe model where publishers (e.g. devices that generate data) create topics to which subscribers (e.g., devices that want to consume data) can subscribe. Publisher is an object responsible for data distribution and the subscriber is responsible for receiving published data. DDS provides quality-of-service (QoS) control and configurable reliability. DDS is described in Object Management Group (OMG) DDS specification [16]. AMQP: Advanced Message Queuing Protocol (AMQP) is an open application layer protocol for business messaging. AMQP supports both point-to-point and publisher/subscriber models, routing and queuing. AMQP brokers receive messages

from publishers (e.g., devices or applications that generate data) and route them over
connections to consumers (applications that process data). Publishers publish the messages to exchanges which then distribute message copies to queues. Messages are
either delivered by the broker to the consumers which have subscribed to the queues
or the consumers can pull the messages from the queues. AMQP specification is

Bahga & Madisetti, © 2015

CoAP: Constrained Application Protocol (CoAP) is an application layer protocol for
machine-to-machine (M2M) applications, meant for constrained environments with
constrained devices and constrained networks. Like HTTP, CoAP is a web transfer
protocol and uses a request-response model, however it runs on top of UDP instead of
TCP. CoAP uses a client-server architecture where clients communicate with servers
using connectionless datagrams. CoAP is designed to easily interface with HTTP
Like HTTP, CoAP supports methods such as GET, PUT, POST, and DELETE. CoAP
draft specifications are available on IEFT Constrained environments (CoRE) Working
Group website [12].

a lllOU UUIN

MQTT: Message Queue Telemetry Transport (MQTT) is a light-weightmessaging
protocol based on the publish-subscribe model. MQTT uses a client-server architecture

where the client (such as an loT device) connects to the server (also called MOTT
Broker) and publishes messages to topics on the server. The broker forwards the
messages to the clients subscribed to topics. MQTT is well suited for constrained
environments where the devices have limited processing and memory resources
and the network bandwidth is low. MQTT specifications are available on IBM
developerWorks [14].

CHAPTER1
Introduction
1.1 Welcome to the World of Embedded Processors
1.1.1 Where Are the Processors Used?

If you are new to microcontrollers or ARM processors, first I would like to give you a
very wanm welcome.

Processors are used in majority of electronic products. For example, your mobile phones, televisions, washing machines, cars, bank card (smartcards), and even simple devices like
the remote control for your radio can have processors inside. In most cases, these
processors are placed inside in chips called microcontrollers. In modern microcontrollers,

the chip also contains the essential elements like memory systems and interface hardware
(often called peripherals). There are many diferent types of microcontrollers; they can be
available with different processors, memory sizes, and peripherals inside, and can be

available in different packages (Figure 1.1).
Large numbers of microcontrollers are designed for general purpose, which means they
can be used in wide range of applications. Sometimes processors are used in chips that are

NXP LPC1114
Freescale Kinetis KL03 (Cortex-M0)

(Cortex-MO0+)
Driving o New t

he Next Word
Knats k cho

NXP LPC1343

(Cortex-M3)

LPCXpresso LPC1343 REVVe
021ROHS/NO-PB 0C

R38

R
UT Uesigned b

Ombedaad Ani C3

Figure 1.1
Microcontrollers are available in wide range of physical packages.

The DebinitiveGaide to ARM Cortex -Mo and Cortex-Mo+ Prucessors, ttp:/dxadovi.ory/10.101 MRY78:-0-12-80327-0,o001-
Copyright 2015 Elsevier Ine. All rightis reserved.

6 Chapter 1

Gortex-A72

High-end
Application

ARM Cortex
Performance
functhenality

Cortex As7 processors
processor

Cortex-A17
Cortex-A15 Cortex-A12

Cortex-A9 Cortex A53

Cortex-A8 Gortex-
Cortex-A5

High performance
Real-time system

Cortex-R7

ARM11 Cortex-R5

series

Cortex-R4 Cortex-M
Cortex-M4

Cortex-Mo0

ARMOE
series

Cortex-M3 Microcontroller

ARM7TDMI applications
Cortex-Mo

Cortex-M1

2003 2005 2009 2012 Future

Figure 1.3

Overview of the ARM processor family.

In around 2003, ARM realized that it needs to diversify the processor products to address

different technical requirements in different markets. As a result, three product profiles are

defined, and the Cortex processor brand name is created for the naming of these new

processors:

LCortex-A processors-These are Application processors, which are designed to provide

high performance and include features to support advanced operation systems (eg.
Android. Linux, Windows, i0S). These processors typically have longer processor pipeline
and can run at relatively high clock frequency (e.g. over 1 GHz). In terms of features,

these processors have Memory Management Unit (MMU) to support virtual memory

addressing required by advanced OS, optional enhanced Java support, and a secure

program execution environment called TrustZone".3

The Cortex-A processors are typically used in mobile phone, mobile computing devices
(eg, tablets), television, and some of the energy efficient servers.

While the Cortex-A processors have high performance, the processor is not designed to
provide rapid response time to hardware events (i.e., real-time requirements). As a result, a

Introduction 7

different profile of high-performance processors is needed, and they are the Cortex-R

processors.
Cortex-R processors-These are Real-Time, high performance processors that are very

good at data erunching. can run at fairly high clock speed (e.g., 500 MHz to 1 GHz range),

and at the same time can be very responsive to hardware events. They have cache

memories as well as Tightly Coupled Memories, which enable deterministic behavior for

interrupt handling. The Cortex-R processors are also designed with additional features to

enable much higher system reliability such as Error Corection Code (ECC) support for

memory systems and dual-core lock-step feature (i.e., redundant core logic for error

detection).]
LThe Cortex-R processors can be found in hard disk drive controllers, wireless baseband

controllers/modem, specialized microcontrollers such as automotive and industrial

controllers.

While the Cortex-R processors can be very good at high-performance microcontroller
applications, they are quite complex designs and can consume fair amount of power.)
Therefore, another group of processors are need for the very low-power embedded
products, and they are the Cortex-M processors.

[Cortex-M Processors-The Cortex-M Processors are designed for main stream
microcontroller market where the processing requirement is less critical, but need to be

very low power. Most of the Cortex-M Processors are designed with a fairly short pipeline,

for example, two stage in the Cortex-M0+ processor and three stages in Cortex-MO,

Cortex-M3, and the Cortex-M4 Processors. The Cortex-M7 processor has a longer
pipeline (six stages) due to higher performance requirement, but still the pipeline is a lot
shorter than the designs of high-end application processors As a result of the shorter

pipeline and low power optimizations in the design, the maximum clock frequencies for
these processors are slower than Cortex-R and Cortex-A processors, but this is rarely a
problem because even a 100 MHz Cortex-M-based microcontroller can do a lot of work.

The Cortex-M processors are designed to provide very quick and deterministic interrupt
responses. To achieve this, the processor's execution control part is closely coupled with a

built-in interrupt controller called Nested Vectored Interrupt Controller (NVIC). The NVIC

provides powerful and yet easy-to-use interrupt's management. In general, the Cortex-M
processors are very easy to use, with almost everything can be programmed in C.

Due to their low power, fairly high performance, and ease of use benetits, the Cortex-M

processors are selected by most major microcontroller vendors in their flagship
microcontroller productsThe Cortex-M processors are also used in some of the sensors,
wireless communication chipsets, mixed signal ASICs/ASSPs, and even used as controller

in some of the subsystems in complex application processors/SoC products.

In addition to the Cortex processor families, ARM also has processors specially designed

for security-sensitive products, which included temper-resistance features. These

processors are the SecurCore series. For example. the SCO00. one of the SecurCore is

designed based on the Cortex- MO processor (same instruction set, and uses NVIC for

interrupt management). The SecurCore products can be found in SIM cards, banking/

payment systems, and even some electronic 1D cards.

8 Chapter 1

1.2.3 Bhurring the Boundaries

In some ways, the tenn microcontroller can be a bit vague. Some of the microcontrollers

are based on application processors such as ARM926EJ-S. one of the processor in the
ARM9E processor family. In last few years, some of the microcontroller vendors starting
to prduce microcontroller products based on the ARM Cortex-A processors

(eg.. Freescale Vybrid. Atmel SAMASD3). and ARM Cortex-R processors (e.g.. Texas
Instruments TMS570. Spansion Traveo Family).
At the same time. the Cortex-M processors are also being used in many complex SoC
devices as power management controller, I/O subsystem controller, etc.

In the next generation of Cortex-R processor based on the ARMv8-R architecture. the architecture definition also allows the processor to incorporate a MMU so that it can be used with a full feature OS like Linux or Android, and at the same time handle real-time tasks based on a virtualization mechanism.

1.2.4 ARM Cortex-M Processor Series

There are a number of processors in the Cortex-M processor family, as shown in Table 1.1. If we look at the instruction set in a bit more details (Figure 14), we can see that the Cortex-MO, Cortex-MO+, and Cortex-M1 processors only support a small instruction set (56 instructions). Most of these instructions are 16 bit, thus provide a very good code density-which means it need a smaller program memory require for the same task compared to many architecture.

The instruction set of the Cortex-M0 and Cortex-MO+ processors are fairly simple. But if
an application task involves complex data processing, then potentially a long sequence of
instructions is needed to accomplish the operations in the Cortex-MO/MO+ processor
because of the simple instruction set. In those cases, it might be better to use the Cortex-M3 processor because the Cortex-M3 processor supports a number of extra
instructions (mostly 32 bit) that supports the following:More memory addressing modes

Larger immediate data in the 32-bit instructions

Introduction 9

Table 1.1: The Cortex"-M Processor family

Processor Descriptions
Cortex-M0 The smallest ARM processor-only approximately 12000* logic gates at minimum

configuration. It is very low power and energy efficient.

The most energy efficient ARM processorit has a similar size as the Cortex-M0
processor, but with additional system level and debug features (all optional), and have
higher energy efficiency than the Cortex-M0 processor design. It supports the same
instruction set as the Cortex-MO processor.
It is a smali processor design optimized for field programmable Gate Array (FPGA)
applications. It has the same instruction set and architecture as in the Cortex-M0
processor, but has FPGA specific memory system features.
When compared to the Cortex-M0 and Cortex M0+ processors, the Cortex-M3 has a
much more powerful instruction set, and its memory system is designed to provide

higher processing throughput (e.g, use of Harvard bus architecture). lt also has more
system level and debug features, but at a cost of larger silicon area (minimum gate
count is about 40000 gates) and slightly lower energy efficiency. In general, the energy

effciency of the Cortex-M3 processor is still a lot better than may traditional 8-bit
and 16-bit microcontroller devices because the performance is substantially higher.

The Cortex-M3 processor is very popular in the 32-bit microcontroller market.
The Cortex-M4 processor contains all the features of the Cortex-M3 processor, but
with additional instructions to support DSP applications and have an option to
include a floating point unit (FPU). It has the same system level and debug features as
the Cortex-M3 processor.

lt is a high performance processor designed to cover application spaces where the

existing Cortex-M3 and Cortex-M4 processors cannot reach. Its instruction set is a

superset of the Cortex-M4 processor, for example, supporting both single and double
precision floating point calculations. It also has many advanced features, which are
usually find in high-end processors such as caches and branch predictions.

Cortex-M0+

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-M7

The exact gate count of a processor depends on many factors such as the serniconductor process library used, the chip

design tool used, the design optimization options, signal routing constraints, etc.

Longer branch and conditional branch ranges
Additional branch instructions

Hardware divide instructions

Multiply accumulate (MAC) instructions

Bit field processing instructions

Saturation adjustment instructions

As a result, the Cortex-M3 processor can handle complicate data processing quicker.

The code size might be similar to Cortex-M0 or Cortex-M0+ processor because although
fewer number of instructions are required to perform the same operations, and these

powerful instructions are mostly 32 bit instead of 16 bit. These 32-bit instructions also
enable the Cortex-M3 processor to utilize the registers in the register bank better.

In some applications, however, you might need to perform some DSP operations such as

filtering, signal transformations (e.g., Fast Fourier Transform), etc. In these applications,

10 Chapter 1
Cortex-M7 FPU
single and double AANNA VMIMA

precision floating point)

Cortex M4 FPU

(sirnigle preclsion

floating point)

VwNR IETN

HY veV
MH VFNMA

V NMIA VMALS

M
VFNMS A TMS

VSUe
M VSTA

UADD UMADI u1HADD
$ADDe UAODI SADD1

SHBUR1 SHADD16 HABO"

SMSYA
AN ASR PKH SE

CMO AOD1 CREX CM SMULTT MUTa
cDP

1ORD ORB DRH
FOR

SMULST SMULa9

LDRSH LORS uADO SMLATT SMAT OAT DRHT tORAT

uQsUB
LOREM 5 SMLART SMLARS

LDRSHT LDREX LOREX LOREET
SMMUL

MCRR MRRC) PLD SMLALTT 5MLALTB
MCA MRC

MLS MA ULWT

SMLALST L SMLALBs
MUL MVN

MOV MOVW MOVT

RBIT SMULW

PLDW USADAS USA0s ORN
USH POP RR

GASX SMLAD
REVSH QSAK JL REV16 REV ADO ADR BRPT BLX BC

Ev SMLSO
UQSAX UOASX

BX CPSCMN
JLRRX sec

ISB
A*D ASR

SASX
STC

UBFX sBFX LALD
UASX

MRS MSR SUB

J UOIV SDIV 5AX SMLSLD
USAX

ISB JLSTRD
DSE DMB

UMULL SMULL SHASX SMUAD
UHASX STRB STRH

CMP LOR LDRH LDRB LDM EOR

SMLAL SHSAX SMUSO

STMIA STMDB UMLAT UHSAX
SL LSB MOV NOP

SXB SMLAWT STREX | STREX8 UXTB
UXTAB SXTAS

REV EY6 VS MUL MVN ORR

USAT SSAT
UXTAH SXTAH SMLAW3

STREXH STRT
RSB SEVSVC PUSM POP ROX

UXTH SXTH uXTAB16 SxTAB165 SMMLASTRHT STRBT

STR STRH STRB STM sUB
SBC

WFE SXTB16 SMMS WFI UXTB16 BH TBB SXTBUKTBSXTH UXTH TST NELD

Cortex-MO/M0+/M1

(ARMv6-M)

YIELD T UMAAL
USAT16 sSAT16 EQ

WFE WR ST

32-bit instructions Cortex-M3 (ARMV7-M) Cortex-M4 (ARMv7E-M)
16-bit instructions

Figure 1.4

Instruction set of the Cortex-M processor family.

you might want to use the Cortex-M4 processor because the Cortex-M4 processor added

another group of instructions targeted for these applications-these included Single

Instruction Multiple Data (SIMD) operations and saturated arithmetic instructions. The

internal data path of the processor is also redesigned to enable single cycle MAAC

operations

The Cortex-M4 processor also has an optional floating point unit that support IEEE-754

single precision floating point calculations. It does not mean that you cannot perform

floating point processing in the Cortex-M0, Cortex-M0+, or other processors without the

floating point unit. If you are using these processors for floating point operations, the

Introduction 11

compiler will insert runtime library functions to handle the floating point calculation using software, which can take much longer to do and need additional code size overhead.
For applications that demand very high data-processing requirements, or if double precision floating point calculation is needed, then the Cortex-M7 processor might be the best choice. It is designed to provide very high data-processing performance, but use the same programmer's model and a superset of the instruction set as Cortex-M4 processor. To decide which processor to use in a project, you need to understand the processing requirements of the application. Some general guideline is shown in Table 1.2.
Please note that you might also need to consider the differences of the system-level features and performance when selecting the right Cortex-M processor. An overview of the comparison is shown in Table 1.3 and a comparison of the performance is shown in Table 14. Please note that the Cortex-M processors are very configurable and the exact features can be customized by the chip designers and vary among different devices.
In general, the ARM Cortex-MO and Cortex-MO+ processors are both very suitable for ultra-low power applications, and because the instruction set and programmer's model are relatively simple, and the architecture is very C-friendly, they are also very suitable for beginners. For example, there is no need to learn a lot of tool chain-specific keywords or data types to get the application to work on a Cortex-M microcontroller, unlike many 8-bit or 16-bit architectures.

Table 1.2: The applications for various Cortex-M Processors

Processor Applications
Cortex-M0, Cortex-M0+ General data processing and 1/O control tasks.

Ultra low power applications.
Upgrade/replacement for 8-bit/16-bit microcontrollers.
Low-cost ASICs, ASSPs
Field Programmable Gate Array(FPGA) applications with small to medium data processing complexity. (For high-complexity data
processing there are FPGAs with built-in Cortex-A processors such as Xilinx Zynq-7000 and some of the Altera Arria V SoCs and Cyclone V
SoCs).

processors

Cortex-M1

Feature-rich/high-performance/low-power microcontrollers.
Light-weight DSP applications.

Cortex-M3

Feature-rich/high-performance/low-power microcontrollers.
DSP applications.

Applications with frequent single precision floating point operations.

Cortex-M4

Feature-rich/very high pertormance power microcontrollers.
DSP applications.

Applications with frequent single or double precision floating point

Cortex-M7

operations.

12 Chapter 1

Table 1.3: An overview of the system level and debug features
for various Cortex"-M Processors

Features Cortex-M0 Cortex-M0+ Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M7
Number of 1-32 1-32 1, 8, 16, 32 1-240
interrupts 1-240 1-240

Interrupt 4

priority levels 8-256 8-256 8-256

FPU

Optional
(single
precision)

Optional (single
precision/single +
double precision)

OS support
Optional

Memory
Protection

Optional Optional Optional Optional
unit

Cache
Optional Debug Optional Optional Optional Optional Optional Yes

instruction Optional Optional Optional Optional ETM trace MTB ETM ETM
Other trace

Optional Optional Optional

Table 1.4: Performance of various Cortex"-M Processors with commonly used benchmarks
Features Cortex-MO Cortex-MO+ Cortex-M13 Cortex-M4 Cortex-M7
Dhrystone 2.1 (per MHz)
CoreMark 1.0 (per MHz)

0.9 0.95 1.25 1.25 2.14
2.33 .46 3.34 3.40 5.01

1.2.5 Quick Glance on the ARM Cortex-MO and Cortex-M0+ Processor

The Cortex-M0 and Cortex-M0+ Processors:

Are 32-bit Reduced Instruction Set Computin
ture specification called ARMv6-M Architecture. The bus interface and internal data

paths are 32-bit width.

Have 16 32-bit registers in the register bank (r0 to rl15). However, some of these regis-
ters have special purposes (e.g., R15 is the Program Counter, R14 is a register called

Link Register, and R13 is the Stack Pointer).

The instruction set is a subset of the Thumb Instruction Set Architecture. Most of the

(RISC) processor, based on an architec-

instructions are 16 bit to provide very high code density.
Support up to 4 GB of address space. The address space is architecturally divided into a

number of regions.

Based on Von Neumann bus architecture (although arguably the Cortex-M0+ processor

have a hybrid bus architecture because of an optional separate bus interface for fast

peripheral register accesses, see section 4.3.2 Single Cycle IVO Interface in Chapter 4).

Introduction 13

Designed for low-power applications, including architectural support for sleep modes

and have various low power features at the design/implementation level.

Includes an interrupt controller called NVIC. The NVIC provides very flexible and

powerful interrupt management.
The system bus interface is pipelined, based on a bus protocol called Advanced High-
performance Bus (AHB") Lite. The bus interface supports transfers of 8-bit, 16-bit, and
32-bit data, and also allows wait states to be inserted. The Cortex-MO+ procesor also

have an optional bus interface (Single Cycle I/0 interface, see section 4.3.2) for high-

speed peripheral registers, which is separated from the main system bus.
Support various features for the OS (Operating System) implementation such as a
system tick timer, shadowed stack pointer, and dedicated exceptions for OS operations.

Includes various debug features to enable software developers to create applications

efficiently.
Designed to be very easy to use. Almost everything can be programmed in C and in
most cases no need for special C language extension for data types or interrupt handling

support
Provide good performance in most general data processing and 1/0 control applications.

The Cortex-MO and Cortex-M0+ processors do not include any memory and have only
got one built-in timer which is primarily for OS operations. Therefore a chip designer

needs to add additional components in the chip design themselves.

1.2.6 From Cortex-Mo Processor to Cortex-M0+ Processor

The ARM Cortex-M0 processor was released in 2009. It was a ground-breaking product

because it is the first product that demonstrated it is possible to cramp a 32-bit processor

into the silicon footprint similar to an 8-bit or 16-bit processors, while still able to make

the design usable and provide excellent energy efficiency and a decent performance for a

32-bit processor.

Although the Cortex-M0 processor is a lot smaller than the Cortex-M3 processor (which
was released in 2005), it maintains a number of key advantages as in Cortex-M3

processor:

Flexible interrupt management using a built-in interrupt controller called NVIC
OS support features including a timer hardware called SysTick (System Tick timer) and

exception types dedicated to OS operations

High code density

Low power support such as sleep modes

Integrated debug support
Easy to use (almost everything programmable in plain C language)

ne Cortex-M0 processor has been a very successful product, and was the fastest licensed
ARM processor in 2009. After the Cortex-MO processor is released, the designers in
ARM have received additional feedback from customers, microcontroller users and chip
designers, and ARM decided that there is an opportunity for an enhanced version for the
Cortex-MO processor, which was subsequently called the Cortex-MO+ processor.
The Cortex-M0+ processor supports all the features available in the Cortex-MO processor,
but additional features were added to make it more powerful (these are all configurable by
the chip designers):

Unprivileged execution level and Memory Protection Unit (MPU)-this feature is
available in other ARM processors such as the Cortex-M3 processor. It allows an OS to

execute some of the application tasks with an unprivileged level so that the OS can

mpose memory access restrictions. For example, the unprivileged software cannot
access critical system registers in the processors like NVIC registers, and memory

access permissions can be managed by the MPU. In this way, a system can be made

more robust because a misbehaving unprivileged task cannot corrupt critical data used

by the OS kernel and other tasks.

Vector Table relocation-again, this is a feature already existing in the Cortex-M3

processor. By default, the vector table is defined as the start of the memory (address
Ox0O000000). The Vector Table Offset Register allows the vector table to be defined in
other memory locations such as a different program memory location or in SRAM. This

is very useful for microcontroller devices, which might have separated vector table for

boot process and user applications.
Single Cycle I/O interface-this is a separate bus interface specifically added to allow

frequently accessed I/O registers to be read/write in a single cycle. Without this feature,

a load/store operation needs to go through the pipelined system bus, which needs two

clock cycles per access. This feature enables microcontrollers or embedded system to

have higher VO performance, as well as higher energy eficiency in I/O intensive

operations.

Internally to the processor design, there are also some significant changes. Instead of using

a three-stage pipeline as in the Cortex-MO and Cortex-M3 processors, the Cortex-M0+

processor is designed with a tw0-stage pipeline. This reduces the number of flip-flops in

the processor, and hence reduces the dynamic power, and provides slightly higher

performance at the same time because the branch penalty is reduced by one clock cycle.

In the Cortex-M0+ processor pipeline, as shown in Figure 1.5, a small part of the

instruction decoding operations is carried out as soon as the instruction enters the

Cortex-MO Processor-Fastest Licensing ARM Processor (http:l/www.arnm.com/about/newsroom/26419.php).

Introduction 15

Cortex-MO+
Processor

Pipellne
stage

Pipeline
stage

Maln

instruction
decode

Program Memor
(e flastm0

Address

Instruction Buffer

Control
Pipeline

Execution
logic

Pre decode

Registers

Address
generation

Clock

Instruction #N
Fetch Degode Execute

Instruction #N+1
Fetch Decbde Execute Pre-decode

Main decode
Figure 1.s Two-stage Pipeline in the ARM" Cortex-MO+ Processor. processor bus interface. The rest of the instruction decoding is combined with the

execution stage.

Adding decode logic to the instruction fetch stage do have some impact to the timing of

the design. However, the balance between predecode and main decode logic was selected
carefully to minimize the impact to the achievable maximum clock frequency. In addition
most of the low-power microcontrollers run at fairly low clock frequency in comparison to

the maximum processor speed. Therefore this is not a problem to most of the silicon
designs.
In some cases, the power consumption of the processor is reduced by 30% when
comparing between Cortex-M0 processor and the Cortex-M0+ Processor. However, at the
system level, the difference would be much smaller because most of the power could be
consumed by the memory system.

In order to reduce system-level power, additional optimizations have been implemented to

reduce the program memory accesses:
First, by shortening the processor to a two-stage pipeline design, the branch shadow of the
processor is reduced. In a pipeline processor, when a branch instruction is executed, the

16 Chapter 1

Branch taken Maximum branch shadow is 2

Label instructions (1 word) and minimum
is 0 instructlon

BGE Label
(branch)

ADD CMP

Branch shadow

Program flow Instructions fetched but not
executed due to branch

Figure 1.6
Power wastage reduction by reducing branch shadow. Image courtesy of ARM".

instructions following the branch instruction would have been fetched by the processor.
These instructions fetched are called branch shadow (Figure 1.6), and they are discarded
by the processor and hence a long branch-shadow means wasting more energy.

Secondly, when a branch operation takes place and if the branch target instruction
occupies only the second half of a 32-bit memory space (as shown in Figure 1.7), the
instruction fetch is carried out as a 16-bit transfer. In this way, the program memory can
switch off half of the byte lanes to reduce power.

The amount of power reduction by these techniques depends on how often branch

operations are carried out in the application code.

Finally, in linear code execution, the program fetches are handled as 32-bit accesses. Since

most of the instructions are 16-bit, each instruction fetch can provide up to two

instructions. This means that the processor bus can be in idle state half of the time if there

Branch taken

Label

Ox00001006 Ox00001008 Ox0000100A 0x0000100C ox0000100D

Word boundry

Program flow

Figure 1.7

Power wastage reduction by fetching branch target with minimum transfer size.

Image courtesy of ARM

Introduction 17

HTRANSHED KE
AH

HAODR

HRDATA

Fetrch
pipere (xecute

Figure 1.8

Program fetch power reduction by fetching up to two instructions at a time.

Image courtesy of ARM"

is no data access instruction executed (Figure 1.8). Chip designers can utilize this

characteristic to reduce the power consumption in the program memory (e.g., flash

memory).
Another important enhancement in the Cortex-M0+ processor is the adding of a feature
called Micro Trace Buffer (MTB). This unit enables low-cost instruction trace, which is

very useful during software development, for example, helping to investigate the reason
for a software failure. The details of the MTB are covered in Chapter 13 and appendix E.

The Cortex-M0+ processor have additional enhancements when compared to the

Cortex-M0 processor in terms of chip design aspects (most of these are invisible to
microcontroller users). For example, a hardware interface was added to allow the startup
sequence of the processor to be delayed, which is useful for many SoC designs with

multiple processors.

Today, many microcontroller vendors already started offering microcontroller products
based on the Cortex-MO+ processors.

1.2.7 Applications of the Cortex-M0 and Cortex-M0+ Processor

The Cortex-M0 and Cortex-M0+ processors are used in a wide range of products.

Microcontrollers

The most common usage is microcontrollers. Many Cortex-M0 and Cortex-MO+
microcontrollers are low-cost devices and are designed for low-power applications. They

can be used in applications including computer peripherals and accessories, toys, white
goods, industrial and HVAC (heating, ventilating, and air conditioning) controls, home

automation, etc.

When comparing the microcontrollers based on the Cortex-MO and Cortex-M0+
processors to traditional 8-bit and 16-bit microcontroller products, the Cortex-M

18 Chapter 1

microcontrollers allow embedded products to be built with more features, more
sophisticated user interface, due to support of larger address space, powerful interrupt
control, and higher performance.
The better performance and small size also bring the benefit of higher energy efficiency.
For example, for the same processing task, you can finish the processing quicker and allow

the system to stay in sleep modes longer
Another advantage of using ARM Cortex-M processors for microcontroller applications is
that they are very easy to use. Therefore it is very appealing to many microcontrolier
vendors as product support and educating the users can be challenging for some other

processor architectures.

ASICs and ASSPs

Another important group of applications for the Cortex-M0 and Cortex-M0+ processors are ASICs and ASSPs. For example, there are a number of touch screen controllers,
sensors, wireless controllers, Power Management ICs (PMIC), and smart battery controllers designed based on the Cortex-MO or Cortex-M0+ processors.
In these applications, the low gate count advantage of the Cortex-M0 and Cortex-M0+
processors allow high performance processing capability to be included in chip designs that traditionally only allow 8-bit or simple 16-bit processors to be used.
System on Chips

For complex SoC, the designs are often divided into a main application processor system and a number of subsystems for: /O controls, communication protocol processing, and system management. In some cases, the Cortex-MO and Cortex-M0+ processor can be used in part of the subsystems to off-load some activities from the main application processor, and to allow small amount of processing be carried out while the main
processor is in standby mode (e.g., in battery powered products). It might also be used as a System Control Processor (SCP) for boot sequence management and power management.
1.3 What Is Insidea Microcontroller
1.3.1 Typical Elements Inside a Microcontroller

There can be many components inside a basic microcontroller. For example, a simplified block diagram is shown in Figure 1.9:

In the diagram there are a lot of acronyms. They are explained in Table 1.5.
As shown in Figure 1.9, there can be a lot of components in a microcontroller (not to mention other complex interfaces like Ethernet, USB, etc.). In some microcontrollers you

CHAPTER 2
Technical Overview
2.1 What are the Cortex"-MO and Cortex-MO+ Processors?
The ARM Cortex-MO processor and Cortex-M0 + processors are both 32-bit processors. Their internal registers in the register banks, data paths, and the bus interfaces are all 32 bit. Both of them have a single main system bus interface, therefore they are considered as Von Neumann bus architecture.
The Cortex-M0+ processor has an optional single cycle /O interface that is primarily for faster peripheral /O register accesses. Therefore, it is possible to say the Cortex-MO+ processor has limited Harvard bus architecture capability as instruction access and I/O register accesses could be carried out at the same time, but it is important to understand that although there can be two bus interfaces, the memory space is shared (unified) and therefore the extra bus interface does not bring additional addressable memory space. The key characteristics of the Cortex-MO and Cortex-M0+ processors are as follows: Processor pipeline

The Cortex-M0 processor has a three-stage pipeline (fetch, decode, and execute) The Cortex-M0+ processor has a two-stage pipeline (fetch + predecode, decode + execute)
Instruction set

The instruction set is based on Thumb" Instruction Set Architecture (ISA). Only a
subset of the Thumb ISA is used (56 of them). Most of the instructions are 16 bit in size, only a few of them are 32 bit.
In general, the Cortex-M processors are classified as Reduced Instruction Set Computing although they have instructions of different sizes. Support optional single cycle 32 bit x 32 bit multiply, or a smaller multicycle multi- plier for designs that need small silicon area. Memory addressing
32-bit addressing supporting up to 4 GB of memory space The system bus interface is based on an on-chip bus protocol called AHB-Lite. supporting 8-bit, 16-bit, and 32-bit data transfers The AHB-Lite protocol is pipelined, support high operation frequency for the system. Peripherals can be connected to a simpler bus based on APB protocol (Advanced Peripheral Bus) via an AHB to APB bus bridge.

The Defiitive Guide w ARM" Cortex-MU and Cortex-MU+ Prucessurs. httyp://ds.dui.org/10.101b/B78-44-12-803277-8,t00u2-3 Cupyright 2015 Elsevier lnc. All ights reserved
29

30 Chapter 2

Interrupt Handling
The processors include a built-in interrupt controller called the Nested Vectored Interrupt

Controller (NVIC). This unit handles interrupt prioritization and masking functions. It

Supports up to 32 interrupt requests from various peripherals (chip design dependent), an

additional Non-Maskable Înterrupt (NMI) input, and also support a number of system

exceptions.
Each of the interrupts can be set to one of the four programmable priority levels. NMI

has a fixed priority level.

Operating Systems (OS) support
Two system exception types (SVCall and PendSV) are included to support OS operations.

An optional 24-bit hardware timer called SysTick (System Tick Timer) is also included

for periodic OS time keeping.

The Cortex-M0+ processor support privileged and unprivileged execution level

(optional to chip designers). This allows OS to run some of the application tasks with

unprivileged execution level and impose memory access restrictions to these tasks.

The Cortex-M0+ processor has an optional Memory Protection Unit (MPU) to allow

OS to define memory access permission for application tasks during run time.

Low Power support

Architecturally two sleep modes are defined as normal sleep and deep sleep. The exact

behaviors in these sleep modes are device specific (depends on which chip you are

using). Chip designers can also add device specific power saving mode control registers

to expand the number of sleep modes or to allow the sleep mode behavior for each part

of the chip to be defined.

Sleep mode can be entered using WFI (Wait for Interrupt) or WFE (Wait for Event)

instructions, or using a feature called Sleep-on-Exit to allow the processor to enter sleep

automatically.
Additional hardware level supports to enable chip designers to create better power

reductions based on the sleep mode features, for example, the Wake-up Interrupt

Controller (WIC).

Debug
The debug system is based on the ARM CoreSight

"

Debug Architecture. It is a scalable

debug architecture that can support simple-single processor designs to complex multi-

processor designs.

A debug interface that can either be based on JTAG protocol (4 or five pins), or Serial

Wire Debug protocol (2 pins). The debug interface allows software developers to access

debug features of the processors.

Support up to four hardware breakpoints, two data watchpoints, and unlimited software

breakpoint using BKPT (breakpoint) instruction.

Support basic program execution profiling using a feature called Program Counter (PC)

Sampling via the debug connection.

Technical Overview 31
seiveatuyieiicoa

The Cortex-MO+ Processor has an optional feature called Micro Trace Buffer (MTB),.
this provide instuction trace.

The Cortex-M Processors are configurable designs. They are delivered to chip designers in

form of Verilog source cote files with a number of parameters that chip designers can
select. In this way, chip designers can omit some of the features that are unnecessary for

their projects to save power and reduce silicon area. As a result, you can find

mierocontrollers based on the Cortex-MO and Cortex-MO+ processor with different number

Of supported interupts, and Cortex MO0+ processor with and without the optional MPU.

During the design process (lipure 2.). the processor is integrated with the rest of the

sy'stem and converted to a design composed of logic gates and then transistors layout using

chip design tools. The timing characteristics like maximum clock frequency are defined at

thesc stages based on the semiconductor process sclccted for the project and various

design constraints. In addition, the exact maximum speed and power consumption of the

Cortex-MO or Cortex-MO+ processor on different products can also be different from

cach other.

module mux(
input wire A,
input wire B,
input wire Sel,
output wire Y

assign Y= (Sel) ? B: A
endmodule

Verilog code
Logic gate netlist

Transistor layout

Figure 2.1

Simplified chip design flow.

2.2 Block Diagrams

A simplified block diagram of the Cortex"-MO processor is shown in Figure 2.2.

The processor
core contains the register banks, ALU, data path, and control logic. It is a

three-stage pipeline design with fetch stage, decode stage, and execution stage. The

register
bank has sixteen 32-bit registers. A few of the registers in the register bank have

special usages (e.g.. PC). The rest are available for general data processing.

The NVIC accepts up to 32 interrupt request signals and a NMI input. It contains the

functionality required for comparing priority
between interrupt requests and current

priority
level so that nested interrupts can be handled automatically. If an interrupt is

accepted, the NVIC
communicates

with the prOcessor
so that the processor

can
execute the

correct interrupt handler.

32 Chapter 2

Power management interface

Wakeup
Interrupt

Controller

JTAG
Serlal-Wire Connection

to debugger

(WIC)
Debug

Interface

Nested
Interrupt

requests and

NMI

Vector
Processor

Interrupt
Controller

Debug
Subsystem Core

(NVIC)

Internal Bus System

Processor AHB LITE
bus interface System

(Integration
layer)

unit
Cortex-M0
Processor Bus Interface

Memory and

Peripherals

Figure 2.2

A simplified block diagram of the Cortex-MO Processor.

The WIC is an optional unit. In low-power applications, the microcontroller can enter

standby state with most parts of the processor powered down. Under this situation, the

WIC can perform the function of interrupt masking while the NVIC and the processor

core are inactive. When an interrupt request is detected, the WIC informs the power

management to power up the system so that the NVIC and the processor core can then

handle the rest of the interrupt processing

The debug subsystem contains various functional blocks to handle debug control, program

breakpoints, and data watchpoints. When a debug event occurs, it can put the processor

core in a halted state so that embedded developers can examine the status of the processor

at that point.

The internal bus system, data path in the processor core, and the AHB-Lite bus interface

are all 32-bit wide. AHB-Lite is an on-chip bus protocol used in many ARM processors.

This bus protocol is part of the AMBA° (Advanced
Microcontroller Bus Architecture)

specification,
which is a bus architecture developed by ARM and widely used in the IC

design industry.

Technical Overview 33

The JTAG or Serial Wire interface units provide access to the bus system and debugging
functionalities. The JTAG protocol is a popular 4-pin (5-pin if including a reset signal)
communication protocol commonly used for IC and PCB testing. The Serial Wire protocol
iS a newer communication protocol that only requires two wires, but it can handle the same
debug functionalities as JTAG. As illustrated in the block diagrams (Figures 2.2 and 2.3),
the debug interface module is separated from the processor design. This is required in the
CoreSight Debug Architecture where multiple processors can share the same debug
connections. There are a number of additional signals for multiprocessor debug support not
shown in the diagrams.
The Cortex-M0+ processor is very similar (as shown in Figure 2.3) to Cortex-M0

processor. The only addition is the adding of the optional MPU, single cycle VO interface
bus and the interface for the MTB. The processor core internal design is also changed to a

two-stage pipeline arrangement

Power

management Single Cydie
intertace VO intertace AHB SRAM

JTAG
Serial-Wire

Debug
interface

Wakeup Micro Trace
Connection interrupt

Controliler
(WIC)

Butfler (MTB)
to debugger

Trace
intertace

tiested Interrupt
requests and

NMI

Vector
Debug

subsystemn
Processor core inderrup

Controler

(NVIC)
MPU

internal Bus Systerm

Single Cycle
VO interface

Processo AHB LITE
bus interface System

(integration
layer)

Contex-MO0
Processor Bus Interface

Fast peripherals Memory and

Peripherais

Figure 2.
A simplifed block diagram of the Cortex-MO processor.

34 Chapter 2

The MPU is a programmable device used to dlefine access permission of the memory map.

In some of the applications where an OS is used, application tasks can be executed with

an unprivileged execution level with restrict memory access defined by the MPU, which is

programmed by the OS.

The single cycle 1/O interface provides another bus interface with faster access compared to

the AHB-Lite system bus (pipelined operation). The MTB is used to provide instruction trace.

In both Cortex-MO and Cortex-MO+ processors, a number of components in the

processoN are optional. For example, the debug support, MPU and the WIC are all

optional. Some other components like the NVIC are configurable: allowing chip designers

to define the features available., for example, the number of interrupt requests (IRQ).

2.3 Typical Systems

As you ean see from the block diagrams, the Cortex-MO and Cortex-M0+ processors do

not contain memories and peripherals. Chip designers need to add these components to the

designs. As a result, different Cortex-M processor-based microcontrollers can have

different memory sizes, address map, peripherals, interrupt assignment, etc.

In a simple microcontroller design based on a Cortex-M processor, the design would

consist of the following:

A memory for program code storage, usually a Read-Only-Memory (ROM) component,

or reprogrammable memory technologies such as flash memory.

A read-write memory for data (including variables, stack, etc.), usually based on Static

Random Access Memory (SRAM).

Various types of peripherals.

Bus infrastructure components for joining the processor to all the memories and

peripherals.

In some cases, there can also be a separate ROM device with boot code to boot up the

microcontroller before the program in the user flash is executed. This is typically called

boot ROM or boot loader.

For a simple design with Cortex-M0 processor, the design could look like the one shown

in Figure 2.4.

A typical design based on the Cortex-M0 processor might partition the bus system into

two parts, which are as follows:

System bus connected to the inemories including ROM, flash imnemory (for user program

storage), the SRAM, a few number of peripherals, and a bus bridge to the peripheral

bus system.

Technical Overview 35

Interrupts
IRQS NM Processo

Digital logic

System bus (AHB Lite) Memories

High Speed
Peripherals
(eg GPIO)

Bus Digital Peripherals Flash Boot ROM SRAM Bridge Memory
Analogue / Mixed
Signal Peripherals

IRQS
Peripheral bus (AP8)

UART
Other

peripherals

SP Timers DAC ADC

VO pads
Figure 2.4

A simple system with the Cortex-MO Processor.

The peripherals are connected to the peripheral bus, which might have a different oper ating frequency compared to the system bus.
It is quite common for some of the peripherals to be connected to a separated peripheral bus, which is linked to the main system bus via a bus bridge. This bus protocol for the peripheral bus is typically based on APB, which is a bus protocol defined in the AMBA".
The uses of a separated APB peripheral bus are as follows:

Allows lower hardware cost because the APB protocol (non-pipelined operations) is simpler than AHB-Lite (pipelined operations)
Allows the peripheral bus to run at a different clock frequency than the main system bus Avoids large combinational logic in the bus infrastructure for the main system bus, which could become the bottle neck in terms of getting to get high operating frequeney. Many peripherals might present in a microcontroller designs and the bus fabric for pe- ripherals can become quite large.

Another group of important connections are the interrupts-A number of peripherals can generate interrupt requests, including the General Purpose InpuuOutput (GPiO) modules. In most microcontroller designs, external devices connected to certain GPIO pins can generate interrupt request to the processor via some additional conditioning and synchronization logic.

36 Chapter 2

Singie Cvele 1/0

intertace bus High Speed
Pernpherals
eeG0)

nterrupts Processer Trace
IRQs, NM) interface Digital logic

System bus (AHB Lite) Memories

MTB Bus Digital Peripherals Flash Boot ROM
Memory Bridge

Analogue / Mixed

Signal Peripherals SRAM

IRQS Peripheral bus (APB)

UART Timers DAC ADC Other

peripherals

VO pads

Figure 2.5

A simple system with the Cortex-M0+ Processor.

For a system based on the Cortex-MO+ processor, the system design can be very similar

like the one shown in Figure 2.5.

In this design, the high-speed peripherals are moved to the single cycle /O interface bus

for faster VO performance, and the MTB is added between the AHB-Lite system bus and

the SRAM for support instruction trace capture.

Potentially the processor might not be the only component in the system that can generate

bus transactions. In many microcontroller products, there is also a component called Direct

Memory Access (DMA) controller. Once programmed, the DMA controller can carry out

memory accesses on requests from peripherals without processor intervention (Figure 2.6)

The DMA controller can perform data transfers between memory and peripherals, or

befween memories (e.g, to accelerate memory copy). This is commonly needed for

microcontrollers with high bandwidth communication interface like Ethernet or USB.

However, it can also benefit some low-power applications, for example, by avoiding

waking up the processor from sleep mode to collect small amount of data from

peripherals.

4.2.2 Registers and Special Registers

In order to perform data processing and controls, a number of registers are required inside

the processor core. If data from memory is to be processed, it has to be loaded from the

memory to a register in the register bank, processed inside the processor, and then written

back to the memory if needed, or kept in the register bank for another operation. This is

commonly called "load-store architecture." By having a sufficient number of registers in

the register bank, this mechanism is easy to use, and is C-friendly. It is easy for C

compilers to compile a C program into machine code with good performance.

The Cortex-MO and Cortex-M0+ processor provides a register bank of 16 32-bit registers

(most are general purposed, R13-RI5 has special purposes), and a number of special

registers (Figure 4.3).

Architecture 91

Register bank

RO General Purpose Register

Special Registers General Purpose Register
2 General Purpose Register

xPSR Program Status Registers
General Purpose Register

Low Registers
R General Purpose Register
R5 General Purpose Register APSR EPSR PSR

Application Execution Intermupt
PSR

R6 General Purpose Register

PSR PSR R7 General Purpose Register

R8 General Purpose Register

R9 General Purpose Register PRIMASK Interrupt Mask Register
R10 General Purpose Register High Registers

CONTROL Stack definition R11
R12

R13 (banked)
R14

General Purpose Register

General Purpose Register

Stack Pointer (SP)

Link Register (LR)
R15 Program Counter (PC)

MSP Main Stack Pointer

PSP Processs Stack Pointer

Figure 4.3
Registers in the Cortex"-M0 and Cortex-MO+ processors.

The detailed descriptions for these registers are as follows:

RO-R12

Registers RO-R12 are for general uses. Due to the limited space in the 16-bit Thumb instructions, many of the Thumb instructions can only access R0-R7, which are also called the low registers. While some instructions, like MOV (move), can be used on all registers. When using these registers with ARM" development tools such as the ARM assembler, you can use either upper case (e.g., RO) or lower case (e.g., r0) to specify the register to be used. The initial values of R0-R12 at reset are undefined.
R13, Stack Pointer

R13 is the Stack Pointer. It is used for accessing the stack memory via PUSH and POP operations. There are physically two different stack pointers in Cortex-M0 and Cortex- M0+ Processors.

The Main Stack Pointer (MSP, or SP_main in ARM documentation) is the default Stack Pointer after reset, and is used when running exception handlers. The Process Stack Pointer (PSP, or SP_process in ARM documentation) can only be used in Thread mode (when not handling exceptions). The stack pointer selection is determined by the CONTROL register, one of the special registers which will be introduced later (CONTROL-Special Register).

92 Chapter 4

When using ARM development tools, you can access the stack pointer using either "R13"

or "SP" Both upper case and lower case (e.g., "r13" or "sp") can be used. Only one of the

stack pointers is visible at a given time. However, you can access to the MSP or PSP

directly when using the special register access instructions MRS and MSR. In such cases,

the register names "MSP" or "PSP" should be used.

The lowest 2 bits of the stack pointers are always zero and writes to these 2 bits are ignored.

In ARM processors, PUSH and POP are always 32-bit accesses because the registers are

32-bit, and the transfers in stack operations must be aligned to a 32-bit word boundary. The

initial value of MSP is loaded from the first 32-bit word of the vector table from the program

memory during the start-up sequence. The initial value of PSP is undefined.

It is not necessary to use the PSP. In many applications, the system can completely rely on

the MSP. The PSP is normally used in designs with an OS, where the stack memory for

OS Kermel and the thread-level application codes must be separated.

R14, Link Register

R14 is the Link Register (LR). The LR is used for storing the return address of a subroutine

or function call. When BL or BLX is executed, the return address is stored in LR. At the end

of the subroutine or function, the return address stored in LR is loaded into the program

counter (PC) so that the execution of the calling program can be resumed. In the case where

an exception occurs, the LR also provides a special code value which is used by the

exception return mechanism. When using ARM development tools, you can access to the

LR using either "R14" or "LR." Both upper and lower case (e.g., "T14" or "r) can be used.

Although the return address in the Cortex-MO/M0+- processor is always an even address

bit[0] is zero because smallest instruction are 16-bit and must be half-word aligned), bit

zero of LR is readable and writeable. In the ARMv6-M architecture, some instructions

require bit zero of a function address set to 1 to indicate Thumb state.

R15, Program Counter

RI5 is the PC. It is readable and writeable. A read returns the current instruction address

plus four (this is caused by the pipeline nature of the design). Writing to R15 will cause a

branch to take place (but unlike a function call, the LR does not get updated).

In the ARM assembler, you can access the PC using either "RI5" or "PC," in either upper

or lower case (e.g., "r15" or "pc"). Instruction addresses in the Cortex-M0/M0+ processor

must be aligned to half-word address, which means the actual bit zero of the PC should be

zero all the time. However, when attempting to carry out a branch using the branch

instructions (BX or BLX), the LSB of the PC should be set tol. This is to indicate that

Not required when a move (MOV) or add (ADD) instruction is used to modity the PC.

Architecture 93

the branch target is a Thumb program region. Otherwise, it can imply an attempt to switch
the processor to ARM state (depending on the instruction used), which is not supported and will cause a fault exception.
xPSR, Combined Program Status Register
The combined Program Status Register (PSR) provides information about program execution and the AlLU Mags. It consists of the following three PSRs (Figure 4.4):

Application PSR (APSR).
Interupt PSR (IPSR), and
Exccution PSR (EPSR)

Dit
31 28 24 16| 8 0

APSR NZcV Reserved

31 24 16 8 5

IPSR Reserved ISR Number

31 24 6|

EPSR Reserved Reserved

Figure 4.4
Application PSR (APSR), Interrupt PSR (IPSR), and Execution PSR (EPSR)

The APSR contains the ALU flags: N (negative flag), Z (zero flag), C (carry or borrow

flag), and V (overflow flag). These bits are at the top 4 bits of the APSR. The common use
of these flags is to control conditional branches.

The IPSR contains the current executing ISR (Interrupt Service Routine) number. Each

exception on the Cortex-MO/MO+ processor has a unique associated ISR number (exception

type). This is useful for identifying the current interupt type during debugging and allows an
exception handler that is shared by several exceptions to know which exception it is serving.

The EPSR on the Cortex-MO/M0+ processor contains the T bit which indicates that

processor is in the Thumb state. On the Cortex-MO/MO+ processor, this bit is normally set

to I because the Cortex-M processors only support Thumb state. If this bit is cleared, a

HardFault exception will be generated in the next instruction execution.

These three registers can be accessed as one register called xPSR. For example, when :

interrupt takes place, the xPSR is one of the registers that is stored on to the stack memory

automatically and restored automatically after returning from an exception. During the

stack store and restore, the xPSR is treated as one register (Figure 4.5).

94 Chapter 4

bit

16
31 28 24

Reservod ISR Number
xPSR N Z CVReserved T

Figure 4.5

xPSR.

Direct access to the PSRs is only possible through special register access instructions.

However, the value of the APSR can affect conditional branches and the carry flag in the

APSR can also be used in some data processing instructions.

PRIMASK-Interrupt Mask Special Register

The PRIMASK register is a 1-bit wide interrupt mask register. When set, it blocks all

interrupts apart from the Non-Maskable nterrupt (NMI) and the HardFault exception.

Effectively it raises the current interrupt priority level to 0 which is the highest value for a

programmable exception (Figure 4.6).

oit

31

Reserved
PRIMASK

PRIMASK

Figure 4.6

PRIMASK.

The PRIMASK register can be accessed using special register access instructions (MSR,

MRS) as well as using an instruction called CPS. This is commonly used for handling

time critical routines.

CONTROL-Special Register

As mentioned earlier, there are two stack pointers in the Cortex-M0 and Cortex-M0+

processors. The stack pointer selection is determined by the processor mode as well as the

configuration of the CONTROL register (bit 1-SPSEL). The Thread mode of the

Cortex-M0+ processor can either be privileged or unprivileged, and this is also controlled

by CONTROL (bit 0--nPRIV) (Figure 4.7).

oit
0

31

Reserved CONTROL

SPSEL (Stack definition)

nPRIV (not Privileged) /Reserved

Figure 4.7

CONTROL

Architecture 95

After reset, the MSP is used, but can be switched to the PSP in Thread mode (when not

running an exception handler) by setting bit[|] in the CONTROL register. During running

of an exception handler (when the processor is in handler mode), only the MSP is used,

and the CONTROL register reads as zero. The bit[I] of CONTROL register can only be

changed in Thread node, or via the exception entrance and return mechanism

(igure 4.8).

Thumb State

Exception
request

Handler Mode
Executing exception handler

Exception
roturn

CONTROL[1]= 0

MSP selected

Thread Mode
Executing normal code

CONTROL[1] = 0 CONTROL[1] = 1

Start
MSP selected PSP selected

Figure 4.8

Stack pointer selection.

Bit[0] of the CONTROL register is for selecting between Privileged and Unprivileged

states during Thread mode. Some of the Cortex-M0+ devices and all Cortex-MO

processor-based devices do not support unprivileged state and therefore this bit is always

zero (Figure 4.9).

Thumb State

Exception
request

Handler Mode
Executing exception handler

Exception
return

Always Privileged

Thread Mode
Executing normal code

cONTROL[O] = 0 CONTROL[O]=1
Start

Privileged Unprivileged

Figure 4.9

Privileged state selection.

96 Chapter 4

Access of Registers and Special Registers

In C/C++ programming or any other high level languages, the registers in the register

bank (R0-RI2) can be utilized by the compiler automatically. In most cases, you do not

need to worry about which registers being used. unless you are interfacing assembly code

and C/C++ code (such mixed language development will be cover in Chapter 21).

The other special registers need to be accessed using some special instructions (MRS and

MSR). The CMSIS-CORE provides a number of APls for such usages. However. please note

that some of these special registers cannot be accessed or changed by software (Table 4.1).

Table 4.1: Access limitations to special registers

Privileged Unprivileged

APSR R/W R/W
No access (T bit read as zero)

Read only
Read only
Read only

EPSR
No access (T bit read as zero)

Read only

R/W

R/W

IPSR

PRIMASK

CONTROL

4.2.3 Behaviors of the APSR

Data processing instructions can affect destination registers as well as the APSR which is

commonly known as ALU status flags in other processor architectures. The APSR is

essential for controlling conditional branches. In addition, one of the APSR flags, the C

(Carry) bit, can also be used in add and subtract operations.

There are four APSR fiags in the Cortex-MO ad Cortex-M0+ processors (Table 4.2).

Table 4.2: ALU flags on the Cortex-M0 and Cortex-M0+ processors

Flag Descriptions
Set to bit[31] of the result of the executed instruction. When it is "1," the result has a

negative value (when interpreted as a signed integer). When it is "0," the result has a

positive value or equal zero.

Set to "1" if the result of the executed instruction is zero. It can also be set to "1" after a

compare instruction is executed if the two values are the same.

Carry flag of the result. For unsigned addition, this bit is set to "1" if an unsigned

overflow occurred. For unsigned subtract operations, this bit is the inverse of the borrow

N (bit 31)

z (bit 30)

c (bit 29)

output status.

Overflow of the result. For signed addition or subtraction, this bit is set to "1" if a signed

overflow occurred.
V (bit 28)

A few examples of the ALU fAag results are as given in Table 4.3.

Architecture 97

Table 4.3: ALU flags operation examples

Results, lag
Operation

Result0xE 0000000, N1, Z- 0, C 0, V 1

Result-0x20000000, N 0, Z = 0, C 1, V= 1

Result-0x00000000, N 0, Z 1, C 1, V 1

Result0x00000234, N 0, Z-0, C 1, V-0
ResultOxFFFFFFFF, N 1, Z = 0, C - 0, V 0

Result-Ox00000003,
N= 0, Z - 0, C =1, V= 0

Result-0x0000000 1, N- 0, Z=0, C 1, V - 0

Result 0x80000000, N1,Z0, C = 0, V= 1

Result-Ox00000000, N - 0, Z - 1, C= 1, V= 0

Ox70000000+ 0x70000000

Ox90000000 Ox90000000

Ox80000000+ 0x80000000

Ox00001234 Ox00001000

Ox00000004 0x00000005

OxfFFFEFFF OxFFFFFFFC

Ox80000005 0x80000004

0x 70000000 OxFO000000

OxAO000000 0xA0O00000

In the Cortex-MO and Cortex-M0+ processors, almost all of the data processing instructions

modify the APSR; however, some of these instructions do not update the V flag or the C flag.

For example, the MULS (multiply) instruction only changes the N flag and the Z flag.

The ALU flags can be used for handling data that is larger than 32-bits. For example, we

can perform a 64-bit addition by splitting the operation into two 32-bit additions. The

pseudo fom of the operation can be written as follows:

// Calculating Z - X + Y, where X, Y and Z are al1 64-bit

Z[31:0] X[31:0] + Y[31:0]: // Calculate 1ower word addition,

1 carry flag get updated

Z[63:32] - X[63:32] + Y[63:32] + Carry: // Calculate upper word addition.

An example of carry out such 64-bit add operation in assembly code can be found in

Chapter 6 (Section 6.5.1).

The other common usage of APSR flag is to control branching. More on this will be covered

in Chapter 5 (Section 5.4.8), where the details of the condition branch instruction will be

covered.

4.3 Memory System
4.3.1 Overview

All ARM Cortex-M processors have a 4 GB of memory address space. The memory

space is architecturally defined into a number of regions, with each region having a

recommended usage to help software porting between different devices (Figure 4.10)

The Cortex-MO and Cortex-M0+ processors contain a number of built-in components like

the NVIC (the interrupt controller) and a number of debug components. These are located in

fixed memory locations within the system region of the memory map. As a result, all the
devices based on the Cotex-M processors have the same programming model for interrupt

control and debug. This makes it convenient for software porting as well as helping debug

98 Chapter 4

OxE0OFFFFF OxE0OOEFFF

OxFFFFFFFF
Private peripherals including
built-in interrupt controler

(NVIC) and debug

components

Private System Control

Space (SCs) System Peripheral Bus
(PPB)

OxE 0000000 Private Peripheral Bus

OxDFFFFFFF
OxE0000000 OxEO0OE000

Mainly used for external

penpherals.

External Device 1GB

OxA0000000

Ox9FFFFFFF

Mainly used for external External RAM 1GB
memory.

Ox60000000

Ox5FFFFFFF

Mainly used for peripherals Peripherals 0.5GB
Ox40000000

Ox3FFFFFFF Mainly used for data memory

(e.g. static RAM.)
SRAM 0.5GB

Ox20000000

Mainly used for program
code. Also used for default

0x1FFFFFFF
CODE 0.5GB

Ox00000000
exception vector tabde

Figure 4.10

Memory map.

tool vendors to develop debug solutions for the Cortex-MO-based microcontroller or System-

on-Chip (SoC) products.

The memory space is shared between instruction memory, data memory, peripherals

processor's built-in peripherals (e.g., the interrupt controller), and processor's debug

components. However, the debug components are not visible to the software running on

the processor (from architecture point of view this is implementation defined, and existing

Cortex-MO and Cortex-M0+ processors are designed to make the debug components to be

visible only from debugger). This is different from Cortex-M3, Cortex-M4, and Cortex-M7

processors, where privileged codes can access the debug components.

In most cases, the memories connected to the Cortex-M processors are 32-bits, but it is also

possible to connect memory of different data widths toa Cortex-M processor with suitable

memory interface hardware. The memory system in Cortex-M processors supports memory

transfers of different sizes such as byte (8-bit), half word (16-bit), and word (32-bit). The

Cortex-MO and Cortex-M0+ processor designs can be configured to support either little

endian or big endian memory systems, but cannot switch from one to another in an

implemented design.

Since the memory system and peripherals connected to the Cortex-M0 or Cortex-M0+

processors are developed by microcontroller vendors or SoC designers, different memory

sizes and memory types can be found in different Cortex-M0/MO+-based products.

Architecture 99

4.3.2 Single Cycle /O Interface

The Cortex-M0+ Processor has an optional feature, which allows chip designer to add a

separated bus interface (in addition to the main system bus), which allows certain

peripheral registers to be accessed in a single clock cycle. This enables the microcontroller

product to provide better performance in I/O operations, as well as improve energy

efficiency in 1/0 intensive applications.

When this feature is implemented, the address space connect to the single cycle 1/O

interface appears as a part of the main memory space, so from software point of view the

peripheral registers in the single cycle /O bus works in the same way as registers on the

AHB-Lite system bus. However, this interface can only be used for data accesses and does

not support instruction accesses (lFigure 4.1 1).

Address
decoder to define

fast /O memory

Single Cycle 1/O interface

Data Transfers in memory
space allocated for fast VO

are handled on this bus.
space.

Fast
Processor Peripherals

System Bus

Data Transfers not belong
to fast l/O space and

System bus

(Pipelined operation,
AHB Lite protocol) instruction fetches.

AHB interconnect

ROM RAM Peripherals
Figure 4.11

Optional single Cycle 1/O Interface on the Cortex-M0+ Processor.

The single cycle VO interface is intended for connecting small number of peripherals, which

need faster access speed (e.g., GPI0). Peripherals like UART and timerS are normally

connected via the AHB-Lite system bus because the associated operations typically do not

have short-latency requirement and do not occur frequently.

4.3.3 Memory Protection Unit

Another optional feature in the Cortex-M0+ processor is the MPU (MPU). This is a

programmable unit and is to be used with the privileged-unprivileged states of the

100 Chapter 4

processor. The MPU provides up to eight programmable regions, and each region can be

defined with different starting addresses, sizes, and memory access permissions.

In a multitasking system, an OS can run some of the application tasks in unprivileged state

and the OS can program the optional MPU each time it switches between tasks, so each of

the unprivileged application tasks run in their own permitted memory space and can only

access to memory locations allocated to them.

The configuration registers of the MPU is privileged access only so that an unprivileged

task cannot change the access permission to bypass the MPU.

More information about the MPU is covered in Chapter 12.

4.4 Stack Memory Operations

Stack memory is a memory usage mechanism that allows the system memory to be used as

temporary data storage that behaves as a first-in-last-out buffer. One of the essential elements

of stack memory operation is a register called the Stack Pointer. The stack pointer indicates

where the current stack memory location is, and is adjusted automatically each time a stack

operation is carried out.

In the Cortex"-M processors, the Stack Pointer is register R13 in the register bank.

Physically there are two stack pointers in the Cortex-M processors, but only one of them

is used at a time, depending on the current value of the CONTROL register and the state

of the processor (see Figure 4.8).
In common terms, storing data to the stack is called pushing (using the PUSH instruction)

and restoring data
on processor architecture, some processors perform storing of new data to stack memory

using incremental address indexing and some use decrement address indexing. In the

Cortex-M processors, the stack operation is based on a "full-descending" stack model.

This means the stack pointer always points to the last filled data in the stack memory, and

the stack pointer predecrements for each new data store (PUSH) (Figure 4.12).

rom the stack is called popping (using the POP instruction). Depending

PUSH and POP are commonly used at the beginning and at the end of a function or

subroutine. At the beginning of a function, the current contents of the registers used by the

calling program are stored onto the stack memory using PUSH operations, and at the end of

the function, the data on the stack memory is restored to the registers using POP operations.

Typically, each register PUSH operation should have a corresponding register POP operation;

otherwise the stack pointer will not be able to restore registers to their original values. This

can result in unpredictable behaviors, for example, function return to incorrect addresses.

The minimum data size to be transferred for each push and pop operations is one word

(32-bit) and multiple registers can be pushed or popped in one instruction. The stack

Bluetooth Classic: Version 1.0- 3.0

We have 3 factors that enable someone to distinguish the different Bluetooth

versions. They are power consumption, range, and data speed. Data packets

used and modulation schemes are the primary determinates of these factors.

The first Bluetooth version's release paved the way for the emergence of
wireless items such as speakers, headphones, Bluetooth beacons, and game

controllers used today.

Bluetooth Low Energy: Versions 4.0- 5.0:

Bluetooth 4.0 was announced to the marketplace forming a new grouping

named Bluetooth Low Energy (BLE). It was geared towards installing

applications that require low power consumption and a GFSK modulation

scheme that would enable it to return insufficient data output of 1Mbps. Even

though its maximum data output is 1Mbps, BLE is still unsuitable for products

that need continuous data streaming

Specifications and Features from Bluetooth 1.0 to

Bluetooth 5.0

a) Bluetooth 1.0

It was invented in 1998 was a significant groundbreaking discovery. As the

technology was somehow immature, challenges such as no anonymity were

encountered, but the technology is now outmoded with today's standards.

Some of the minor challenges were fixed by Bluetooth version 1.1, but the

most significant problems were fixed after Bluetooth version 1.2. Significant

improvements included sustenance for adaptive frequency-hopping spread

spectrum (AFH) that minimized interference, quicker speed transmissions of

close to 721kbit/s, Host Controller Interface (HCI), improved discovery, and

Extended Synchronous Connections (ESCO).

b) Bluetooth 2.0

This version 2.0 was released in 2004. GFSK and phase-shift keying
modulation (PSK) are some of the main improved features in this version. The

role of GFSK is to improve the speed of data transfer by supporting the

Enhanced Data Rate (EDR).

The technology improved further after the launch of Bluetooth version 2.1 by
supporting a new feature dabbed "simple. secure pairing" (SSP). It enhanced
the pairing experience. security. and extended inquiry response (EIR), thus
allowing improved devices' filtering before establishing a connection.

c) Bluetooth 3.0

This Bluetooth version was announced into the market in 2009. Over a
collocated 802.11 link, the Bluetooth 3.0 through the High Speed (HS) mode
enables the transfer of data with speeds of up to 24 Mbps. The Bluetooth

version 3.0 comes with other new specifications such as Uitra-wideband,
Enhanced Power Control, L2CAP Enhanced modes, Unicast Connectionless
Data, and Aiternate MAC/PHY. Its high rate of power consumption has

significant drawbacks.

d) Bluetooth 4.0

Bluetooth version 4.0 was released in 2010. Back in those days, the version
was marketed as Bluetooth Smart and Wibree, although it still supported all
the previous versions' features. BLE devices are powered by coin-cell
batteries making power consumption its significant change.

e) Bluetooth version 4.1

Bluetooth version 4.1 was released in 2013, hence improving the users'
experience further. This version enabled easy transfers of bulk data. It also
allowed multiple simultaneous roles and co-existed with LTE.

Other new features supported by this version include:

11n PAL
Minor duty cycle directed publicizing

Partial time of discovery
L2CAP Connection
Dual-mode and topology

LE link-layer topology
Comprehensive interlaced scanning
A fast interval of data advertising

Mobile wireless coexistence signaling services
Wideband speech from audio architecture updates

f) Bluetooth version 4.2

After the release of Bluetooth version 4.2 in 2014, it made it possible for the
release of the Internet of Things (loT). MOKOBlue and other manufacturers
are the first to enter the Bluetooth Internet of things industry, and also make a
total contribution to the development of Bluetooth.. Its main area of

improvements includes

Link-layer privacy that extended the policies for scanner filters
Low energy secure connection that extended the length of Data packets
Version G of the Internet Protocol Support Profile (IPSP)

g) Bluetooth 5.0

The version was presented by Bluetooth SIG in 2016, although it was Sony in
their product Xperia XZ Premium who first implemented this technology. Both
Bluetooth 5 vs. 4.2 primarily focused on refining connectivity and experience
of the internet of Things (loT), thereby offering a unified flow of data. Between
Bluetooth 5.0 vs 5.1, the Bluetooth 5.1 range is a bit higher. Its main areas of

improvements include

Slot Availability Mask (SAM)
Extensions of LE Advertising
2 Mbit/s PHY for LE
LE Channel Selection Algorithm # 2

Long-range LE Long
Non-Connectable advertising high duty cycle

h) Bluetooth version 5.1

Bluetooth 5.1 was unconfined in 2019. When Bluetooth 5.0 vs. 5.1 are
compared, version 5.1 was the first to support the Mesh-based model
hierarchy. Its main improvements areas are;

The angle of Departure (AoD) and Angle of Arrival (A0A)
GATT Caching
Periodic Advertising Sync Transfer
Advertising Channel Index

i) Bluetooth Version 5.2

The latest Bluetooth version 5.2 was introduced by the Bluetooth SIG during
the CES 2020 which was held in January 2020. This version was introduced
into the market alongside the next generation of Bluetooth LE Audio. The

most significant change made between Bluetooth 5.1 vs. 5.2 was that version
5.2 has lsochronous Channels (1SOC). Isochronous Channels supports BLE
devices with Bluetooth 5.2 or later where it acts as the base during the
implemerntation of LE Audio. The other 3 features that come with Bluetooth
version 5.2 are;

Isochronous Channels (ISOC)
Enhanced Attribute Protocol (EATT)

LE Power Control (LEPC)

Bluetooth devices Ranges by class

Bluetooth devices have 3 classes that compromise 3
standard anticipated ranges. Class 1 devices have a range of 328 feet or 100
meters, transmitting at 100 mW. Class 2 devices have a range of 33 feet or 10

meters, transmitting at 2.5 mW, whereas the range of Class 3 devices is less
than 10 meters transmitting at 1 mW.

These are the anticipated ranges, where they can radically decrease due to
an obstacle between the two devices, for instance, walls that weaken signals.
Therefore, the transmitter's strength, the device's proximity obstruction, and
the receiver's sensitivity are the most common factors influencing the range of
Bluetooth devicesS.

Bluetooth mesh version Range in ft Speed in (Mbit/s)

Class 1 100mW 100 meters

Class 2 2.5mW 10 meters

Class 2 1mW Less than 10 meters

When New Bluetooth versions are used with compatible peripherals, they
come with improvements. Before the invention of Bluetooth 4.2 back in 2014,
the other major version of the standard, Bluetooth 4.0, was in 2011. On the
other hand, Bluetooth 5.0 is configured with far better improvements than

previous standards (Bluetooth 4.0 & 4.2). The specifications of Bluetooth 4.2
features are ratified. Hence it can be supported by everything ranging trom

moble phones to beacons. The table below will highlight the typical basic features that difterentiate Bluetooth 50 and Bluetooth 42 versions

Features or
Specifications Bluetooth 4.2 Bluotooth 5.0

Bluetooth 4.2 speed is
lower, only supporting
about 1 Mbps

Higher speed supporting about 2
Mbps, twice the speed of the
Bluetooth 4.2 version

Speed

Bluetooth 4.2 rangeis
low, only supporting 10
meters indoors and 50
meters Outdoors

Bluetooth 5.0 range is high,
supporting 40 meters in indoor
areas and 20 meters in outdoor
locations in Line Of Sight (LOS).
four times than Bluetooth 4.2

Range

version

Power Requirement High power requirement Low power requirement

Small message capacity
of about 31 bytes. Its
actual data payload gives
17 20 bytes

Large message capacity of about
255 bytes

Message Capacity

Robustness to
operate in a

congested
environment

Its robustness to operate
in congested environs is
less

lts robustness to work in
congested areas is more

Battery Lfe Short battery life Longer battery life

Less secure than
Bluetooth 5.0

Security Control More secure than Bluetooth 4.2

It has a theoretical output
of 1 Mbps

It has a theoretical output of 2

Mbps and an overhead of about

1.6 Mbps

Theoretical Data

Throughput

Reliability Less reliable Highly reliable

Foatures or
Bluetooth 4.2 Specifications Bluotooth 5.0

Less good digital life than
Buetooth 4.0 vs. 5.0 Better digital life than Bluetooth 4.2

Digitat tite

Support for loT Bluetooth 4.2 do not
davicess support loT devices It supports loT devices

Due to its lower speed
and range, Beacons weree
less popular. Their

message capacity is low,
at about 31 bytes

With increased speed and range in Bluetooth 5.0 version,
Beacons become more popular

Bhuetooth Beacon

Can Bluetooth 4.0 connect to multiple devices?

The Bluetooth version 4.0 specification has two modes of devices; dual-mode
devices and single-mode devices. All passive Bluetooth 4.0 devices can
implement both or either of the ways. The classic model (BR/EDR) and Low
energy mode are the two Bluetooth version 4.0 modes.

To the question, A single-mode low-energy-only device cannot connect to
classic mode devices. A dual-mode Bluetooth version 4.0 device can connect
with several Bluetooth Low Energy (BLE) devices.

Difference Analysis on Bluetooth 4.0 vs. Bluetooth 4.1
vs. Bluetooth 4.2

New standards that add new features or more Hardware resources required
for running more complicated protocols and algorithms are issued by the SIG
each year. Hence, without the latest software, it becomes tough to eliminate
old natural hardware. The main differences between the 3 versions are;

Bluetooth 4.0 vs. Bluetooth 4.1

1. Increased rate of data transfer

The Bluetooth version 4.1 has a single packet data of 20 bytes, while

Bluetooth 4.1 has a maximum transter maximum of 23 bytes. This raises the

rate of data transfer by 15%. Modifying the transmission rate of 23 bytes when
the chip is supporting Bluetooth version 4.0 is irrelevant as it drops the packet
or complies with an error.

2 Master-slave coexistence

The Bluetooth version 4.2 has an updated link-layer topology that allows
concurrent master-slave coexistence and topology with master-to-multiple
slave connection

B. Supports the 32-Bit UUID

The broadcast packet carries a 32-Bit UUID. This UUID is not about the
attribute list that has the 16-bit and 128-bit. To obtain the full 128-bit UUID on
Bluetooth version 4.1, you only need to broadcast the 32-Bit UUID mapping
as it increases the active broadcast data length in a broadcast packet.

Bluetooth 4.1 vs. Bluetooth 4.2

1. LE connection security

The AES-CCM encryption bases the specifications of pairing encryption links

of Biuetooth versions 4.0 and 4.1; because Bluetooth 4.1 stocks the identical

key, some dangers, and vulnerabilities might be cracked. The Diffie-Hellman

Key Exchange algorithm encrypts the pairing link of Bluetooth version 4.2.

Every Bluetooth 4.2 device has two keys; a private key and a public key. The

users' private key and the other party's public key encrypts the encrypted file,

while the receiver decrypts both the transmitting party's private and public

keys. This effectively prevents the intermediary from key event cracking

2 Privacy protection

Bluetooth continuously broadcasts a Bluetooth device address with a unique

Bluetooth Mac address. The address is essential to some applications, for

instance, logistics tracking app which fixes logistics equipment as stated by

Bluetooth device address.

3 Improved data transmission rate

When it comes to transmission of single packet data, Bluetooth version 4.1

supports up to 23 bytes, whereas Bluetooth version 4.2 provides up to 255

bytes, thereby improving the rate of data transmission

is Bluetooth 4.0 the same as BLE?

Bluetooth version 4.0 rebranding by the group controlling technology helped individuals differentiate Bluetooth Smart and Bluetooth Low Energy. The Bluetooth SIG stated that version 4.0 devices would be called Bluetooth Smart Ready and Bluetooth Smart to distinguish the products featuring this technology.
Bluetooth Smart will characterize a new class of Bluetooth 4.0 peripherals. It features sensor-type devices such as pedometers and heart-rate monitors
specially made to collect unique data. Meanwhile, devices using dual-mode radios referred to as Bluetooth Smart Ready can handle both the Bluetooth 4.2 BLE technology and classic Bluetooth capabilities, for instance, connecting to a hands-free device or transferring files.

Why you should Update your Bluetooth to 5.2

Since the introduction of Bluetooth 5.0 in December 2016, the technology has
become more user-friendly and advanced. The Bluetooth SIG introduced into
the market a radical Bluetooth version 5.2 receiver known as Bluetooth LE
Audio on 7 January 2020. The version is modified with an LE Audio that
enables multiple devices to share data. However, it has a limit of two devices
where files can be transferred from a phone, tablet, or computer. Also, the LE
Audio gives a better audio experience to individuals with hearing problems
Some of the technical specifications of the latest Bluetooth Version 5.1 vs.
5.2 are;

1. Enhanced Attribute Protocol (EATT)

combination of enhancements to the Generic Attribute profile and an
upgraded version of Attribute Protocol (ATT) lead to the birth of Enhanced
Attribute Protocol (EATT). This new protocol enables end-users to reduce
end-to-end latency with development in the sensitivity of applications.

2. Low Energy Power Control

Bluetooth 5.2 devices have an LE Power control that exercises an essential
part in improving transmission power when two devices are connected. They
can also enthusiastically demand transmission power changes to lower power

usage and trade-off the signal's quality.

Some benefits of LE Power control are;

I. Less power consumption.

ii. It enhances the receiver signal dependability.

ii. Growth of existing and upcoming wireless devices

3. Low Energy Isochronous Channels

Improved quality of sound hearing aids has been made promising by the
introduction of Lovw Energy Isochronous Channels. The lsochronous Channels

have made broadcasting and connection of sound to multiple devices

possible. Also, multi-language audio systems have been developed due to

this technology.

(a) Low Energy Audio

LE Audio transmits sound data on low-energy spectrum devices. A new

compression algorithm is used to maintain the Bluetooth's quality.

(b) LC3- Low Complexity Communication Codec

LE Audio encompasses the new low robust and high-quality audio codec LC3.

With better audio high-quality and less power consumption, inventors now

have a colossal elasticity as they can design new wireless merchandise

easily.

(c) Hearing Aid improvements

Many individuals have benefited from Bluetooth technology, where wireless

calling has made driving safer. Productivity has increased as people can take

calls while driving to the office or home.

BLE (Bluetooth Low Energy)
Introduction:

BLE (Bluetooth Low Energy) is wireless PAN technology designed and

maintained by Bluetooth Special Interest Group (SIG). There are various

versions of bluetooth. The version 4.2 and above is referred as BLE. The latest in

the series are v5.0 and v5.1. BLE specifications are intended to reduce power
consumption and cost of devices while maintaining coverage range. BLE is

known as "Bluetooth Smart" where as previous version is known as "bluetooth

classic"
BLE is not backward compatible with BR/EDR protocols.
BLE uses 2.4 GHz ISM frequency band either in dual mode or single mode.
Dual mode supports both bluetooth classic and low energy peripherals.
All BLE devices use the GATT profile (Generic Attribute Profile). The GATT
protocol provides series of commands for the client to discover information about
BLE server.

The BLE protocol stack architecture consists of two parts viz. controller and
host. Both are interfaced using HCI (Host to Controller Interface).
Any profiles and applications run on top of GAP& GATT protocol layers. BLE Protocol Stack | BLE System Architecture

Ap on Layer (App)

Generlc Access Profile (GAP) Generic Attribute Protocol
(GATT)

Security Manager (SMP) Atribute Protocol (ATT HOST

Logical Link Control &Adaptation Protocol
L2CAP

HCI

Link Layer (LL
Contro

\ler Physical Layer (PHY

BLE (Bluetooth Low Energy) Protocol Stack

The figure-2 depicts BLE system architecture. Let us understand functions of
different layers of this BLE protocol stack.

Physical Layer
The transmitter uses GFSK modulation and operates at unlicensed 2.4 GHz
frequency band.

Using this PHY layer, BLE offers data rates of 1 Mbps (Bluetooth v4.2)/2 Mbps
(Bluetooth v5.0).
It uses frequency hopping transceiver.

Two modulation schemes are specified to deliver 1 Msym/s and 2 Msym/s.
Two PHY layer variants are specified viz. uncoded and coded.

A Time Division Duplex (TDD) topology is employed in both of the PHY modes.

Link Layer: This layer sits above the Physical layer. It is responsible for
advertising, scanning, and creating/maintaining connections. The role of BLE
devices changes in peer to peer (i.e. Unicast) or broadcast modes. The common
roles are Advertiser/Scanner (Initiator), Slave/Master or Broadcaster/Observer

Link layer states are defined in the figure below.

Scanning

SynchronMzation

Advertrseg Standby Intiadng

Connection
BLE Link Layer
States

The figure-1 depicts BLE device states >>. The device wil be in any one of these

states which include Standby state, Advertising state, Scanning state, Initiating

state, Connection State and Synchronization state.

HCI: It provides communication between controller and host through standard

interface types. This HCI layer can be implemented either using APl or by

interfaces such as UART/SPI/USB. Standard HCI commands and events are

defined in the bluetooth specifications.

L2CAP :This layer offers data encapsulation services to upper layers. This

allows logical end to end data communication.

SMP :This security Manager layer provides methods for device pairing and key

distributions. It offers services to other protocol stack layers in order to securely

connect and exchange data between BLE devices.

.GAP: This layer directly interfaces with application layer and/or profiles on it. t
handles device discovery and connection related services for BLE device. It also
takes care of initiation of security features.

GATT: This layer is service framework which specifies sub-procedures to use

ATT. Data communications between two BLE devices are handled through these
sub-procedures. The applications and/or profiles will use GATT directly.

ATT This layer allows BLE device to expose certain pieces of data or

attributes.

Application Layer :
The BLE protocol stack layers interact with applications and profiles as desired.

Application interoperability in the Bluetooth system is accomplished by Bluetooth

profiles.

The profile defines the vertical interactions between the layers as well as the

peer-to-peer interactions of specific layers between devices.

A profile composed of one or more services to address particular use case. A
service consists of characteristics or references to other services.

Any profiles/applications run on top of GAP/GATT layers of BLE protocol stack.

It handles device discovery and connection related services for the BLE device.

IOSS GPIO (5x ports)

4x TCPWM

CapSense

2x SCB-12CISPUUART

LCD

2x LP Comparator

24MHz XO
32kHz XO

LDO

1. Introduction
2CYPRESS

EMBEDDED IH TOMORROW*

lo s a programmable embedded svstem controller with an ARM Cortex"-MO CPU. It combines programmable ana-

Ogrammable interconnect, user-oroarammable diaital logic, and commonly used fixed-function peripherals with a high-

Bl "ARM Cortex-M0 subsystem, The PSoC 4xxx-BL family is based on the PsoC 4 architecUre which supports

Bluetooth. This is upward-compatible with larger members ot o*

PSOC 4 devices have these characteristics:
High-performance, 32-bit single-cycle Cortex-MO CPU core
BLE radio and subsystem

o On-chip BLE transceiver
o Link layer controller compliant with Bluetooth 4.2

Fixed-unction and configurable digital blocks

Programmable digital logic
High-performance analog system
Flexible and programmable interconnect

Capacitive touch sensing (CapSense")
Low-power operating modes- Sleep, Deep-Sleep, Hibernate, and Stop modes

Direct memory access (DMA)
This document describes each functional block of the PSoC device in detail. This information will help designers to create

system-level designs.

1.1 Top Level Architecture

Figure 1-1 shows the major components of the PSoC 41x7-BL4xx architecture and Figure 1-2 shows the major components

of the PSoC 42x7-BLA architecture. Figure 1-3 shows the major components of the PSoC 41x8-BL4xx architecture and
Figure 14 shows the major components of the PSoC 42x8-BL4xx architecture. Figure 1-5 shows the major components of

the PSoC 41x8-BL5xx architecture and Figure 1-6 shows the same for PSoC 42x8-BL5xx architecture.

PSoC 41Xx BLEJ42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. 'D
19

2CYPRESS
MBGOPE0 IN YOMORROW

Introduction

Flgure 1-1. PSoC 41x7-BL4xx Famlly Block Diagram

CPU& Momory
PSOC 41x7-BL

Corlex
MO

24 MHz
NYAEMU

NVIRgMA

ROM
8 kB

FLASH SRAM
16 kB

32-Ujt

128 kB
AHD ite

Read Accoloralor 9FAM Conilroler ROM Controller
Synteny Rexources

Rowet
Sponto System Interconnoot (Single Layer AHB)
ROR IVA Pertpherals

AWRSYS
NVLnHe NLPCLK Porlpheral Intorconnect (MMIO)

look
Cock Control Programmmablo

Analog
Bluetooth Low

Energy Subsystem IMOT ILO

BLE Basoband Rosot
Resel ontro
XNES

SAR ADG
(12-bit)

eral
KB SRAM
GFSK Modem

DF Loglc
DFY AM

2.4 GH
GFSK
Radio SMX CTBm x1

HH 2xOpAmp Port Interfaco &Digital System Intorconnect (DSI)

10 AntonnaPawer/Cryla
Actvo Sloep HIgHSpO0C 1/OIMar
ep SJo0p
RHIbOnate.i) S6GX GPIOS

IO Sübsysterm

PSOC 41Xx BLE/42XX_BLE Family PSoC 4 BLE Archteoture TRM, Document No. 001-92738 Rev. 'D

20

CYPRESS EMBEDDED N FOMORROw

Introduction

Figure 1-3. PSoC 41x8-BL4xx Family Block Diagram

CPU & Memory
PSoC 41xB-BL

SWONO
Cortex

MO
24 MHz

SPCE

FLASH
256 kB

ROM SRAM
32 KB

32-0It
8 KB

AHB-LIO ASTMUL
NVIG ROMX SRAM Conlroller ROM Controler Read Accelerator

System Resources

Sleen eontrol|
PORT VI

REE O

System interconnect (Single Layer AHB)

1 Peripherals

PCLK J NVLalehas
Peripheral Interconnect (MMI0)

NVLatcies.u.

Clock

Clock Control
WDT
IMO |ILO

Programmable
Analog

Bluetooth Low
Energy Subsystem

Reset
Reset Control
RES

BLE Baseband
Peripheral

KB SRAM
GFSK Modem

SAR ADC
2-bit

24 GHz i
GFSK Test

DFTLogic
DFT Analog

Radio

CTBm x1
2x OpAmP Port Interface & Digital System Interconnect (s

OAntennalPowericrystal

ighSpeeda/oMatrix

AGVEISleap
eep Sleep
Hibenate 36x GEIOS

1O Subsystema

PSoC 41XX BLE/42XXBLE Family PsoC4 BLE Architecture TRM, Document No. 001-92738 Rey 'n

22

CYPRESS
Introduction

ENBBDORO TOMORnow

Figure 1-2. PSoC 42x7-BL4xx Family Block Diagram PSOC 42x7-BL CPU & Memory

SWOATC
Cortex SPCIE 32-bit

FLASH
128 kB

SRAM
16 kB

MO
ROM
8 KB 48 MHz

HASIIMUL O5 NVCHIRCMX
AHB

Read Accaorator SRAM Controller ROM Controller
System Resources

Rower
Sleep Control

System Interconnect (Single Layer AHB) POR T VD
REF BOD

PWRSYSC
NVLatches

Peripherals
ALN PCLK

Peripheral Interconnect (MMIO)
ock Clock Control rogrammable

Analog Programmable
Digital Bluetooth Low IMO LO

Energy Subsystem

BLE Baseband

Peripheral
L1KB SRAM
GFSK Modem

UDB UDB
Reset Control SAR ADC

(12-bit)

2.4 GHz
GFSK

DETLoglc
DFT Analog

Radio
SMX CTBm x2

2x OpAMP Port Intertace & Digital System Interconnect (DSI)

10Antenna/PowerCrystal High speed VO Matrix ACIvelsioep
Sleep
Hibernate.

36x GPIOs
1O Subsystem

21
PSOC 41XX_BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. 'D

CYPRESS
Iritroduction

EMBEDSES IN TOMGRRDH

Figure 1-4. PSoC 42x-BLAxx Faily Bhosk Disgram

CPU&Memory PSoC 42x8-BL

Cortex
MO FLASH

256 KB
SRAM
32 K

ROM
KE

48 MHz
EAST 7UL AHB-Lite HOM AARD

Resd hctelerator SHAM Contade
System Resourcess

OWer

System Interconnect (Singls Laysr AHE)
Peripherals PORLVD

REFBOOPWRSYS
VLatbies POK Peripheral nterconned (GMAIO)

TOgrasmTFable

Digital
Progranimabe Clock Control

WDT
MO L Analog Energy /sern

UDB UDE

SARADC
12 Reset Control

2A GH
DF LOgc
DFTAnalog CTBm

2x Ophmp Pot Interfas Digaad ystenn nerned ()

AciversSeep

HDenaie

10 Subsyystem

PSOC 41Xx_BLE/42XX._BLE Family PSoC 4 BLE ArChtecture IRM, Document No. 001-92738 Rev. "D
23

CYPRESS Introduction

EMBEDDED 1H 1E#OR#OW"

Figure 1-5. PSoC 41x8-BL5xx Family Block Dlagram CPU Subsysterm PsOC 41x8-BL5x

SWVAC
SPGIE

32-bit

AHB-Lite
ASMUL

NVIC, RQMUX Road AccelerelotSRAM Controler ROM Controller atos/MMIO System Resources
Power

See

System Interconnect (Multi Layer AHB) POR
RE

PWRSYS
NVLatci LPCLK

Peripheral Interconnect (MMIO)
rock

Cock Control Programmable
Analog BluetoothLow

Energy Subsystem
IMO iLO SARA ADC

(12-bit)
Ese

Resetcontrol
AKES

BLE Baseband
Peripheral

AKE SRAM X1

GFSK Modem Test
Digital DF

LAnaloa O
24 GHz

GFSK
Radio

SARMUX CBm
2x OpAmp x Port Intertace & Digital System Interconnect (DSI)

O Antenna/Powerlcryslal
Power Modes
AcWESEEgi
DeepSleep

Hibemate O Subsystem

psaC 41Xx BLE/42XX_BLE Family PSoC4 BLE AICIIeCiure IRM, Document No. 001-92738 ev. *n

24

Introduction

CYPRESS
ENBEDOEO IN TOMORROW

Figure 1-6. PSoC 42x8-BL5xx Family Block Diagramn

CPU Subsystem
PSOC 42x8-BL5xx SWOS

32-bIt
Inilloto/MMIO

Ux SRAM Controllar ROM Controllor
Rond Accolerator 1 AHB-Lite

System Resources
System Interconnect (Multi Layer AHB)

ower
Sleegrontrol

POR VO
PCLKJ

Peripheral Interconnect (MMIO)

Bluetooth Low
Energy Subsystem

NKkehes.

Programimable
Dlgltal

Programmable

Analog
SAR ADC
12-bt)

Clock
Clock Control

BLE Baseband

IMO O Perlpheral UDB UDB
TKE SRAM L

GFSK Modem Roso
Raset control

ARES x1
2,4 GHz
GFSK
Radio ET

Digital DE
Analog DET CTEM SARMUX

HHA 2x OpAmp Port Interface & Digital System Interconnect (DS)

UO: AntennaPower/Crystal

L NNR www

Powor Modes
Active/sleep

Deepsleep Hbernate O SUoSyStem

Segment LCD direct drive

1.2 Features Low-power operating modes: Sleep, Deep-Sleep, Hiber-

nate, and Stop
The PSoC 4xx-BL family has these major components:

BLE radio and subsystem
32-bit Cortex-M0 CPU with single-cycle multiply, deliver-

ing up to 43 DMIPS at 48 MHz

Up to 256 KB flash and 32 KB SRAM

Direct memory access (DMA)
Four independent center-aligned pulse-width modula-

tors (PWMs) with complementary, dead-band program

mable outputs

Programming and debugging system through serial wire

debug (SwD)
Fully supported by PSoC CreatorT IDE tool

1.3 CPU System

1.3.1 Processor

Twelve-bit SAR ADC (with a sampling rate of 1 Msps in

PSoC 42xx-BL and 806 ksps in PSOC 41xx-BL) with

hardware sequencing for multiple channels

The heart of the PSoC 4 is a 32-bit Cortex-M0 CPU core
running up to 48 MHz for PSoC 42x-BL and 24 MHz for
PSoC 41xx-BL. It is optimized for low-power operation with
extensive çlock gating. It uses 16-bit instructions and exe-
cutes a subset of the Thumb-2 instruction set. This instruc- Up to four opamps that can be used for analog signal

conditioning and as a comparator tion set enables fully compatible binary upward migrationhof
the code to higher performance processors such as Cortex
M3 and M4.

Two low-power comparators

Two serial communication blocks (SCB) that can work

as SPI, UART, FC, and local interconnect network (LIN)

slave serial communication channels
The CPU has a hardware multiplier that provides a 32-bit
result in one cycle.

Up to four programmable logic blocks, known as univer-

sal digital blocks (UDBs)

CapSense

PSoC 41XX BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rey. 'D 25

CYPRESS EMBEOOEO W TOMORROW

Introduction

external clock source ranging from 0 MHz to 48 MHz can

be used to generate the clock derivatives for the functional

blocks instead of the IMO.

1.3.2 Interrupt Controller
The CPU subsystem includes a nested vectored interrupt controller (NVIC) with 32 interrupt inputs and a wakeup
interrupt controller (WIC), which can wake the processor from Deep-Sleep mode. The Cortex-MO CPU of PSoC 4
implements a non-maskable interrupt (NMI) input, which can
be tied to digital routing for general-purpose use.

The ECO is used to generate a highly accurate 24-MHz

clock without any external components. It is primaily used

to clock the BLE subsystem, which contains the Link Layer

engine, the digital PHY modem, and the RF transceiver. The

high-accuracy ECO cock can also be used as a clock

source for the PSoC 4 device.
1.3.3 Direct Memory Access

The DMA engine is capable of independent data transfers
anywhere within the memory map (peripheral-to-perpheral and peripheral-to/from-memory) with a programmable
descriptor chain.

The WCO is used as a source for LFCLK. WCO is used to

accurately maintain the time interval of advertising events

and connection events during Deep Sleep mode. Similar to

the ILO, WcO is also available in all modes, except Hiber-

nate and Stop modes.

Note: DMA is available only in PSoC 41x8-BL5xx and PSoC
42x8-BL5xx families. Power System 1.5.2

The PSoC 4 operates with a single external supply in the

range 1.71 V to 5.5 V. 1.4 Memory
PSOC 4 has four low-power modes Sleep, Deep-Sleep,

Hibernate, and Stop - in addition to the default Active mode.

In Active mode, the CPU runs with all the logic powered. In

Sleep mode, the CPU is powered off with all other peripher
als functional. In Deep-Sleep mode, the CPU, SRAM, and

high-speed logic are in retention; the main system clock is

OFF while the low-frequency clock is N and the low-fre-

quency peripherals are in operation. In Hibernate mode,
even the low-frequency clock is OFF and low-frequency

peripherals stop operating.

The PSoC 4 memory subsystem consists of flash and
SRAM. A supervisory ROM, containing boot and configura-
tion routines, is also present.

1.4.1 Flash

The PSoC 4 has a flash module, with a flash accelerator
tightly coupled to the CPU, to.improve average access times
from the flash block. The lash accelerator delivers
85 percent of single-cycle SRAM access performance on an

average.
Multiple internal regulators are available in the system to

support power supply schemes in different power modes.
1.4.2 SRAM

The PSoC 4 provides SRAM, which is retained during Hiber- 1.5.3 GPIO
nate mode.

Every GPIO in PSoC 4 has the following characteristics:

Eight drive strength modes

Individual control of input and oútput disables

Hold mode for latching previous state

1.5 System-Wide Resources

1.5.1 Clocking System
Selectable slew rates

The clocking system for the PSoC 4 device consists of the

internal main oscillator (IMO) and internal low-speed oscilla-

tor (ILO) as internal locks and has provision for an external

clock, external crystal oscillator (ECO), and watch crystal

oscillator (Wco).

Interrupt generation edge triggered
CapSense and LCD drive'support

PSOC 4 also has two over-voltage tolerant ports, which
enable 12C Fast Mode power down specification compliance
and have the ability to cónnect to higher voltage buses while
operating at lower Vpp.

The IMO with an accuracy of t2 percent is the primary

source of internal clocking in the device. Multiple clock deriv-

atives are generated from the main clock frequency to meet

various application needs.

The ILO is a low-power, less accurate oscillator and is used

as a source for LFCLK, to generate clocks for peripheral

operation in Deep-Sleep mode. Its clock frequency is 32 kHz

with +60 percent accuracy.

The pins are organized in a port that is 8-bit wide. A high-
speed l/O matrixiS used to multiplex between various sig-
nals that may connect to an I/O pin. Pin locations for fixed
function peripierals are also fixed.

PSoC 41XX_BLE42XX_BLE Family PSoC 4 E Architecture TRM, Document No. 001-92738 Rev. D
26

CYPRESS ENBEDOE0 IN TOMORADW
Introduction

1.6 Bluetooth Low-Energy
Subsystem

of these counters can be synchronized. Each block has a

capture register, period register, and compare register. The
block supports complermentary, dead-band programmable
outputs. It also has a kill input to force outputs to a predeter-
mined state. Other features of the block include center
aligned PWM, clock prescaling, pseudo randorm PWM, and

quadrature decoding.

PSoC 4xxx Bluetooth Low-Energy (BLE) subsystem inte-grates the RF transceiver, digital PHY modem, and link layer controller

1.6.1 RF Transceiver
1.8.2 Serial Communication Blocks The RF transceiver contains an integrated balun, which pro- vides a single-ended RF port pin to drive a 50-ohm antenna via a matching/filtering network. In the recelve direction, this block converts the RF signal from the antenia to a 1-MHz intermediate frequency and digitizes the analog signal to 10- bit digital signal. In the transmit direction, this block takes 1 Mbps GFSK modulated from digital PHY, up-converts it to radio frequency, and transmit it to air through antenna.

The device has two SCBs. Each SCB can implement a
serial communication interface as FC, UART, local intercon
neot network (LIN) slave, or SPI.

The features of each SCB include:

Standard PC multi-master and slave function
Standard SPI master and slave function with Motorola,
Texas Instruments, and National (MicroWire) mode

1.6.2 Digital PHY Modem Standard UART transmitter and receiver function with
SmartCard reader (ISO7816), IrDA protocol, and LIN

In the transmit direction, this sub-block takes the 1-Mbps serial data from the link layer controller, generates GFSK
direct modulated data, and sends it to the BLE analog sec tion. On the receive side, it takes the 1-MHz IF ADC data
from the BLE analog section and uses digital demodulator to
generate the 1-Mbps serial data.

Standard LIN slave with LIN v1.3 and LIN v2.1/2.2 spec
ification compliance

EZ function mode support for SPI and PC with 32-byte
buffer

1.9 Analog System
1.6.3 Link Layer Controller

1.9.1 SAR ADC
The link layer controller implements all timing critical func-
tions specified in the Bluetooth Low-Energy Link Layer
specifications (packet framing/de-framing, CRC generation/
checking, encryption/decryption, state machines, and
packet transmission); it also provides interface to the digital
PHY. The communication between link layer hardware and
firmware is done through interrupt, FIFO, and registers.

PSOC 42xx-BL has a configurable 12-bit 1-Msps SAR ADC
and PSoC 41xx-BL has a similar 12-bit SAR ADC with
806 ksps. The ADC provides three internal voltage refer
ences (VDDA VDDA2, and VrEF) and an external reference

through a GPIO pin. The SAR hardware sequencer is avail-
able, which scans multiple channels without CPU interven-
tion.

1.7 Programmable Digital 1.9.2 Continuous Time Block mini
The PSoC 42xx-BL has up to four UDBs. Each UDB con-

tains structured data-path logic and uncommitted PLD logic

with fiexible interconnect. The UDB array provides a

switched routing fabric called the digital signal interconnect

(DSI). The DSI allows routing of signals from peripherals
and ports to and within the UDBs.

The Continuous Time Block mini (CTBm) provides continu-
ous time functionality at the entry and exit points of the ana-
log subsystem. The CTBm has two highly configurable and
high-performance opamps with a switch routing matrix. The
opamps can also work in comparator mode. PSoC 42xx-BL
has two such CTBm blocks, while PSoC 41xx-BL has one
CTBm block.

The UDB arays in PSoC 42xx-BL enable custom logic or

additional timers/PWMs and communication interfaces such

as PC, SPi, 125, and UART.
The block allows open-loop opamp, linear bufter, and com
parator functions to be performed without external compo-
nents. PGAs, voltage buffers, filters, and trans-impedance
amplifiers can be realized with external components.CTBm
block can work in Active, Sleep, and Deep-Sleep modes.

Note PSoC 41xx-BL does not have UDBs.

1.8 Fixed-Function Digital
1.9.3 Low-Power Comparators

1.8.1
Timer/Counter/PWM Block

The PSoC 4xxx-BL has a pair of low-power comparators,
whlch can operate in all device power modes. This function-
alty allows the CPU and other system blocks to be disabled

The Timer/Counter/PWM block consists of four 16-bit coun-

ters with User-programmable period length. The functionality

27 PSoC 41XX BLEJ42XX_BLE Family PSoC4 BLE ArChitecture TRM, Document No. 001-92738 Re n

CYPRESS Introduction
ENBEODEO IN TOMORROW

while retaining the ability to monitor external voltage levels during low-power mOdes. Iwo input voltages can both come
from pins, or one from an internal signal through the AMUX-

buttons and sliders. CapSense functionality is supported on
all GPIO pins in PSoC 4 through a CapSense Sigma-Delta (CSD) block. The CSD also provides waterproofing capabil
ity.

BUS.

1.10 Special Function Peripherals 1.10.2.1 DAC 1.10.2.1 IDACs and Comparator1.10.1 LCD Segment Drive The CapSense block has two lIDACs and a comparator with a 12-V reference, which can be used for general purposes, i CapSense is not used.
The PSoC 4 has an LCD controller, which can drive up to four commons and every GPIO can be configured to drive Common or segment. It uses full digital methods (digital cor relation and PWM) to drive the LCD segments, and does not require generation of internal LCD voltages.

1.11 Program and Debug
PSOC 4 devices support programming and debugging fea tures of the device via the on-chip SWD interface. The PSoC Creator IDE provides fully integrated programming and
debugging support. The SWD interface is also fully compati ble with industry standard third-party tools.

1.10.2 CapSense
PSOC 4 devices have the CapSense feature, which allows you to use the capacitive properties of your fingers to toggle

1.12 Device Feature Summary
Table 1-1 shows the PSoC 41xx-BLI42xx-BL device summary.
Table 1-1. PSoC 41xx-BL/42Xx-BL Device Summary

Feature PSoC 41xx-BL PSoC 42xx-BL
|24 MHz

PSOC 41x7-BL: 128 KB PSoC 42X7-BL: 128 KB
PSOC 41x8-BL: 256 KB

Maximum CPU Frequency
48 MHz

Flash

PSoC 42x-BL: 256 KB
PSOC 42x7-BL: 16 KB
PSOC 42x8-BL: 32 KB

38

PSOC 41x7-BL: 16 KB SRAM
PSoC 41x8-BL: 32 KB3

GPIOs (maximum) 38
Available
Available

Available CapSense
LCD Driver
Timer, Counter, PWM (TCPWM)
Serial Communication Block (SCB)
Universal Digital Block (UDB)

Available
wwwwww

4
wwww.w

Not Available

IDAC (part of CapSense)
Opamp
Comparator

ADC
2
|12-bit SAR, 806 ksps
Available

2

12-bit SAR, 1 Msps
Available Bluetooth

psaC 41XX BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. "D

28

4 Cortex-M0 CPU

CYPRESS EMBEDDEO IN TOMORROw

The PSoC4 ARM Cortex-MO core is a 32-bit CPU optimized for low-power operation. It has an efficlent three-stage pipeline

enory map, and supports the ARMv6-M Thumb instruction set. The Cortex-MO also features a single-cycle 32-

E y instruction and low-latency interrupt handiing. Other subsystems tightly linked to the CPU core include a nested

vectored interrupt controller (NVIC), a SYSTICK timer, and debug
his section gives an overview of the Cortex-MO processor. For more details, see the ARM Cortex-M0 user guide or technical

reference manual, both available at www.arm.com.

4.1 Featuress
The PSoC4 Cortex-M0 has the following features:
Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors

Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power

Maximum CPU cdock frequency of 24 MHz in PSOC41xx_BL and 48 MHz in PSoC 42xx_BL

Supports the Thumb instruction set for improved code density, ensuring efficient use of memory

NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response

Extensive debug support including:
o sWD port

o Breakpoints

o Watchpoints

37

PSoC 41XX BLE/42XX_BLE Family PSoC 4 BLE ArChitecture TRM, Document No. 001-92738 Rev n

Cortex-MO CPU
EM8EODED IN 19MORROW

4.2 Block Diagram

Figure 4-1. PSoC 4 CPU Subsystem Block Diagram

CPU Subsysterm
nterup

MUX

ARM Cortex-Mo CPU
te

Contra DAP+

system Interconnect

FInsh

Programming Interfece
Flash

Accelerator
SRAM

Controlle
SROM

Controlle

SRAM
CPU & Memory

Subsystem Flash SROM

AHB Brldge

4.3 How It Works

The Cortex-M0 is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most

16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set

The processor supports two operating modes (see "Operating Modes" on page 40). It has a single-cycle 32-bit multiplication

instruction.

4.4 Address Map

The ARM Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access

instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 4-1. Note that code can be executed

from the code and SRAM regions.

Table 4-1. Cortex-MO Address Map

Name
Use

Address Range
Program code region. You can also place data here. Includes the exception vector table,

which starts at address 0.

| Data region. You can also execute code from this region,

All peripheral registers. You cannot execute code from this region.

Code
Ox00000000-Ox1FFFFFFF

SRAM

Peripheral
Ox20000000 0x3FFFFFFF

Ox40000000-Ox5FFFFFFF

Ox60000000-0xDFFFFFFF

OxEOO00000-OxE0OFFFFF

OxE0100000 OxFFFFFFFF

Not used.
Peripheral registers within the CPU core.

PSOC 4 implementation-specific
PPB rew

Device

aSeC 41Xx BLE/42XX_BLE Family PSoc 4 BLE ArChitecture TRM, Document No. 001-92738 Rev. 'D

38

CYPRESS Cortex-MO CPU
ENPEDDED IN TOMORAOW"

4.5 Registers
The Cortex-MO has 16 32-bit registers, as Table 4-2 shows O to R12-General-purpose registers. RO to R7 can be accessed by all instructions; the other registers can De ao by a subset of the instructions.
ackpointer (SP). There are two stack pointers. with only one available at a time. In thread mode, the CONTROL

egister indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSF). R14-ink register. Stores the return program counterduring function cails R15-Program counter. This register can be written to control program 1oW.

Table 4-2. Cortex-M0 Registers
Name Type Reset Value Description

RO-R12 RW L Undefined RO-R12 are 32-bit general-purpose registers for data operauons.
The stack pointer (SP) is register R13. In thread mode, bitl1] of the CONTROL register
indicates which stack pointer to use:

0 Main stack pointer (MSP). This is the reset value.
1 Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address Ox00000000.
The link register (LR) is register R14. It stores the return information for subroutines,

function calls, and exceptions.
The program counter (PC) is register R15. It contains the current program address. On

MSP (R13)
PSP (R13) RW [Ox0000000o

LR (R14) RW Undefined

PC (R15) RW [OxO0O00004] reset, the processor loads the PC with the value from address 0x00000004. Bit0] of the

value is loaded into the EPSR T-bit at reset and must be 1.
The program status register (PSR) combines:

Application Program Status Register (APSR). PSR RW Undefined
Execution Program Status Register (EPSR).

Interrupt Program Status Register (PSR).
APSR RW Undefined The APSR contains the current state of the condition flags from previous instruction

executions.
[Ox000000041.0 On reset, EPSR is loaded with the value bit0] of the register [0x00000004]. EPSR

IPSR
RO

RO The IPSR contains the exception number of the current ISR.
The PRIMASK register prevents activation of all exceptions with configurable priority.
|The CONTROL register controls the stack used when the processor is in thread mode.

PRIMASK RW

CONTROL
a. Describes access type during program execution in thread mode and handier mode. Debug access can differ.

RW

Table 4-3 shows how the PSR bits are assigned.

Table 4-3. Cortex-M0 PSR Bit Assignments

Usage PSR Register
APSR
APSR

Bit Name
Negative flag
Zero flag
Carry or borrow flag

31

30

29 APSR

APSR Overflow Tlag

39
PSOC 41XX BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. "D

CYPREss
Cortex-M0 CPU

EMBEOOED IN TGMORROW

Table 4-3. Cortex-MO PSR Bit Assignments Bit PSR Register Name
27 255

Usage Reserved
Th
numd state bit. Must always be 1. Altempting to execute instructions wnen ue

24
EPSR

results in a HardFault exception. Reserved
23-6

Exception number of current ISR:
0 = thread mode

1 reserved

2= NMI
3 HardFault
4-10 reserved 5-0 IPSR N/A 11 SVCall

12, 13 reserved
14 PendSV

15 SysTick
16 IRQO

47 IRQ31
Use the MSR or CPS instruction to set or clear bit 0 of the PRIMASK register. If the bit is 0, exceptions are enabled. if the Dit
IS 1, all exceptions with configurable priority, that is, all exceptions except HardFault, NMI, and Reset, are disabled. See tne Interrupts chapter on page 57 for a list of exceptions.

4.6 Operating Modes
The Cortex-M0 processor supports two operating modes:
Thread Mode - used by all normal applications. In this mode, the MSP or PSP can be used. The CONTROL register bit 1 determines which stack pointer is used:

o 0 MSP is the current stack pointer
O 1 PSP is the current stack pointer

Handler Mode used to execute exception handlers. The MSP is always used.
In thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the stack pointer, use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the IB execute using the new stack pointer.

In handler mode, explicit writes to the CONTROL register are ignored, because the MSP is always used. The exception entry and return mechanisms automatically update the CONTROL register.

4.7 Instruction Set
The Cortex-M0 implements a version of the Thumb instruction set, as Table 4-4 shows. For details, see the Cortex-MO Generic User Guide.

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on the operands and often store the result in a destination register. Many instructions are unable to use, or have restrictions on using, the PC or SP for the operands or destination register.

PSOC 41XX_BLE/42xX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. "D 40

CYPRESS Cortex-Mo CPU EMBEDGED IN TOMORROW"

Table 4-4. Thumb Instruction Set
Table 4-4. Thumb Instruction Set

Mnemonic Brief Description Mnemonic
ADCS

Brief Description
SEV Send event

Add with carry

ADDIS)
ADR
|ANDS
ASRS
BKoc

STM
STR
STRB

Store multiple registers, increment aftsr
Store register as word
| Store register as byte

Store register as half-word

Add

PC-relative address to register
Bit wise AND

Arithmetic shift right
Branch (conditionally)
Bit clear

IRH

SUB(S)°
SVC
SXTB
SXTH
TST

Subtract

Supervisor call
Sign extend byte
Sign extend half-word
Logical AND-based test
Zero extend a byte

BICS
BKPT
BL
BLX
BX

Breakpoint
Branch with link

Branch indirect with link
|UXTB

Branch indirect Zero extend a half-word

Wait for event
Wait for interrupt

UXTH
CMN Compare negative WFE
CMP

CPSID
Compare WFI

a. The 'S qualifier causes the ADD, SUB, or MOV instrucions to update

APSR condition flags.
Change processorstate, disable interupts

CPSIE Change processor state, enable înterrupts
DMB
DSB

|Data memory barrier
Data synchronizatiorn barrier
Exclusive OR

4.7.1 Address Alignment

EORS

ISB Instruction synchronization barrier

Load multiple registers, increment after

An aligned access is an operation where a word-aligned

address is used for a word or multiple word access, or

where a half-word-aligned address is used for a half-word

access. Byte accesses are always aligned. LDM
LDR Load register from PC-relative address

|Load register with word
Load.register with half-word
Load register with signed byte

Load register with signed half-word

|Logical shift left

|Logical shift right

DRB

LDRH

No support is provided for unaligned accesses on the Cor

tex-M0 processor. Any attempt to perfom an unaligned

memory access operation results in a HardFault exception.

LDRSB 4.7.2 Memory Endianness

LDRSH
The PSoC4 Cortex-MO uses the little-endian format, where

the least-significant byte of a word is stored at the lowest

address and the most significant byte is stored at the high-

est address.

LSLS
LSRS

Move
MOVIS)

MRS
Move to general register from special register

| Move to special register from general register 4.8 Systick Timer
MSR

MULS
MVNS

Multiply, 32-bit result The Systick timer is integrated with the NVIC and generates

the SYSTICK interrupt. This interrupt can be used for task

management in a real-time system. The timer has a reload

register with 24 bits available to use as a countdown value

The Systick timer uses the Cortex-MO internal clock as a

Bit wise NOT

OP
No operation

ORRS
|Logical OR

Pop registers from stack
POP
PUSH

REV
REV16

source.

| Push registers onto stack

Byte-reverse word 4.9 Debug Byte-reverse packed half-words

Byte-reverse signed half-word

Rotate right

PSoC 4 contains a debug interface based on SWD; it fea-

tures four breakpoint (address) comparators and two watch-

point (data) comparators.

REVSH

RORS
Reverse subtract

SBS

SBCS
Subtract with carry

41

nSac 41Xxx BLE/42XX_BLE Family PSoC 4 BLE Archtecture TRM, Document No. 001-92738 Rev. "D

IOT UINIT-4

DATA ACQUIRING AND STORAGE:

Following subsections describe devices data, and steps in acquiring and storing data for

an application, service or business process.

Data Generation:

 Data generates at devices that later on, transfers to the Internet through a gateway.

Data generates as follows:

 ● Passive devices data: Data generate at the device or system, following the result of

interactions. A passive device does not have its own power source. An external source

helps such a device to generate and send data. Examples are an RFID (Example 2.2) or

an ATM debit card (Example 2.3). The device may or may not have an associated

microcontroller, memory and transceiver. A contactless card is an example of the

former and a label or barcode is the example of the latter.

 Active devices data: Data generates at the device or system or following the result of

interactions. An active device has its own power source. Examples are active RFID,

streetlight sensor (Example 1.2) or wireless sensor node. An active device also has an

associated microcontroller, memory and transceiver.

 Event data: A device can generate data on an event only once. For example, on

detection of the traffic or on dark ambient conditions, which signals the event. The

event on darkness communicates a need for lighting up a group of streetlights (Example

1.2). A system consisting of security cameras can generate data on an event of security

breach or on detection of an intrusion. A waste container with associate circuit can

generate data in the event of getting it filled up 90% or above. The components and

devices in an automobile generate data of their performance and functioning. For

example, on wearing out of a brake lining, a play in steering wheel and reduced air-

conditioning is felt. The data communicates to the Internet. The communication takes

place as and when the automobile reaches near a Wi-Fi access point.

 Device real-time data: An ATM generates data and communicates it to the server

instantaneously through the Internet. This initiates and enables Online Transactions

Processing (OLTP) in real time.

 Event-driven device data: A device data can generate on an event only once. Examples

are: (i) a device receives command from Controller or Monitor, and then performs

action(s) using an actuator. When the action completes, then the device sends an

acknowledgement; (ii) When an application seeks the status of a device, then the device

communicates the status.

Data Acquisition:

 Data acquisition means acquiring data from IoT or M2M devices. The data communicates after the

interactions with a data acquisition system (application). The application interacts and communicates

with a number of devices for acquiring the needed data. The devices send data on demand or at

programmed intervals. Data of devices communicate using the network, transport and security layers

(Figure 2.1). An application can configure the devices for the data when devices have configuration

capability. For example, the system can configure devices to send data at defined periodic intervals.

Each device configuration controls the frequency of data generation. For example, system can configure

an umbrella device to acquire weather data from the Internet weather service, once each working day in

a week (Example 1.1). An ACVM can be configured to communicate the sales data of machine and other

information, every hour. The ACVM system can be configured to communicate instantaneously in event

of fault or in case requirement of a specific chocolate flavour needs the Fill service

 Application can configure sending of data after filtering or enriching at the gateway at the data-

adaptation layer. The gateway in-between application and the devices can provision for one or

more of the following functions—transcoding, data management and device management. Data

management may be provisioning of the privacy and security, and data integration, compaction

and fusion (Section 2.3).

 Device-management software provisions for device ID or address, activation, configuring

(managing device parameters and settings), registering, deregistering, attaching, and detaching

(Section 2.3.2). Example 5.2 gives the process of acquiring data from the embedded component

devices in the automobiles for Automotive Components and Predictive Automotive

Maintenance System (ACPAMS) application.

 Data Validation:

 Data acquired from the devices does not mean that data are correct, meaningful or consistent.

Data consistency means within expected range data or as per pattern or data not corrupted

during transmission. Therefore, data needs validation checks. Data validation software do the

validation checks on the acquired data. Validation software applies logic, rules and semantic

annotations. The applications or services depend on valid data. Then only the analytics,

predictions, prescriptions, diagnosis and decisions can be acceptable

 Large magnitude of data is acquired from a large number of devices, especially, from machines

in industrial plants or embedded components data from large number of automobiles or health

devices in ICUs or wireless sensor networks, and so on. Validation software, therefore,

consumes significant resources. An appropriate strategy needs to be adopted. For example, the

adopted strategy may be filtering out the invalid data at the gateway or at device itself or

controlling the frequency of acquiring or cyclically scheduling the set of devices in industrial

systems. Data enriches, aggregates, fuses or compacts at the adaptation layer.

 Data Categorisation for Storage:

 Data from large number of devices and sources categorises into a fourth category called

Big data. Data is stored in databases at a server or in a data warehouse or on a Cloud as

Big data.

 Assembly Software for the Events A device can generate events. For example, a sensor

can generate an event when temperature reaches a preset value or falls below a

threshold. A pressure sensor in a boiler generates an event when pressure exceeds a

critical value which warrants attention.

 Each event can be assigned an ID. A logic value sets or resets for an event state. Logic 1

refers to an event generated but not yet acted upon. Logic 0 refers to an event generated

and acted upon or not yet generated. A software component in applications can assemble

the events (logic value, event ID and device ID) and can also add Date time stamp. Events

from IoTs and logic-flows assemble using software.

 Data Store:

 A data store is a data repository of a set of objects which integrate into the store. Features

of data store are: ● Objects in a data-store are modeled using Classes which are defined by

the database schemas. ● A data store is a general concept. It includes data repositories such

as database, relational database, flat file, spreadsheet, mail server, web server, directory

services and VMware ● A data store may be distributed over multiple nodes. Apache

Cassandra is an example of distributed data store.

 A data store may consist of multiple schemas or may consist of data in only one scheme.

Example of only one scheme data store is a relational database. Repository in English means

a group, which can be related upon to look for required things, for special information or

knowledge

 For example, a repository of paintings of artists. A database is a repository of data which

can be relied upon for reporting, analytics, process, knowledge discovery and intelligence.

 A flat file is another repository. Flat file means a file in which the records have no structural

interrelationship (Section 5.3). Section 5.5.1 explains the spreadsheet concept. VMware

uses data store to refer to a file that stores a virtual machine

 Data Centre Management:

 A data centre is a facility which has multiple banks of computers, servers, large memory

systems, high speed network and Internet connectivity. The centre provides data security

and protection using advanced tools, full data backups along with data recovery, redundant

data communication connections and full system power as well as electricity supply

backups.

 Large industrial units, banks, railways, airlines and units for whom data are the critical

components use the services of data centres. Data centres also possess a dust free, heating,

ventilation and air conditioning (HVAC), cooling, humidification and dehumidification

equipment, pressurisation system with a physically highly secure environment.

 The manager of data centre is responsible for all technical and IT issues, operations of

computers and servers, data entries, data security, data quality control, network quality

control and the management of the services and applications used for data processing

 Server Management:

 Server management means managing services, setup and maintenance of systems of all

types associated with the server.

 A server needs to serve around the clock. Server management includes managing the

following:

 ● Short reaction times when the system or network is down

 ● High security standards by routinely performing system maintenance and updation

 ● Periodic system updates for state-of-the art setups ● Optimised performance

 ● Monitoring of all critical services, with SMS and email notifications

 ● Security of systems and protection

 ● Maintaining confidentiality and privacy of data

 ● High degree of security and integrity and effective protection of data, files and

databases at the organisation

 ● Protection of customer data or enterprise internal documents by attackers which

includes spam mails, unauthorised use of the access to the server, viruses, malwares and

worms

 ● Strict documentation and audit of all activities

 Spatial Storage:

 Consider goods with RFID tags. When goods move from one place to another, the IDs of

goods as well as locations are needed in tracking or inventory control applications. Spatial

storage is storage as spatial database which is optimised to store and later on receives

queries from the applications. Suppose a digital map is required for parking slots in a city.

Spatial data refers to data which represents objects defined in a geometric space. Points,

lines and polygons are common geometric objects which can be represented in spatial

databases. Spatial database can also represent database for 3D objects, topological

coverage, linear networks, triangular irregular networks and other complex structures.

Additional functionality in spatial databases enables efficient processing

 Internet communication by RFIDs, ATMs, vehicles, ambulances, traffic lights, streetlights,

waste containers are examples of where spatial database are used.

 Spatial database functions optimally for spatial queries. A spatial database can perform

typical SQL queries, such as select statements and performs a wide variety of spatial

operations. Spatial database has the following features:

 ● Can perform geometry constructors. For example, creating new geometries

 ● Can define a shape using the vertices (points or nodes)

 ● Can perform observer functions using queries which replies specific spatial information

such as location of the centre of a geometric object Can perform spatial measurements

which mean computing distance between geometries, lengths of lines, areas of polygons

and other parameters

 Can change the existing features to new ones using spatial functions and can predicate

spatial relationships between geometries using true or false type queries

 Can perform spatial measurements which mean computing distance between geometries,

lengths of lines, areas of polygons and other parameters

 ● Can change the existing features to new ones using spatial functions and can predicate

spatial relationships between geometries using true or false type queries

Cloud Computing Features and Advantages:

 Essential features of cloud storage and computing are:

 ● On demand self-service to users for the provision of storage, computing servers,

software delivery and server time

 ● Resource pooling in multi-tenant model

 ● Broad network accessibility in virtualised environment to heterogeneous users,

clients, systems and devices

 ● Elasticity

 ● Massive scale availability

 ● Scalability

 ● Maintainability

 ● Homogeneity

 ● Virtualisation

 Cloud Computing Concerns:

 Concerns in usage of cloud computing are:

 ● Requirement of a constant high-speed Internet connection

 Limitations of the services available

 ● Possible data loss

 ● Non delivery as per defined SLA specified performance

 ● Different APIs and protocols used at different clouds

 ● Security in multi-tenant environment needs high trust and low risks

 ● Loss of users’ control

Cloud Deployment Models:

 Following are the four cloud deployment models: 1. Public cloud: This model is

provisioned by educational institutions, industries, government institutions or

businesses or enterprises and is open for public use.

 2. Private cloud: This model is exclusive for use by institutions, industries, businesses or

enterprises and is meant for private use in the organisation by the employees and

associated users only.

 3. Community cloud: This model is exclusive for use by a community formed by

institutions, industries, businesses or enterprises, and for use within the community

organisation, employees and associated users. The community specifies security and

compliance considerations

 4. Hybrid cloud: A set of two or more distinct clouds (public, private or community) with

distinct data stores and applications that bind between them to deploy the proprietary

or standard technology.

 Cloud platform architecture is a virtualised network architecture consisting of a cluster

of connected servers over the data centres and Service Level Agreements (SLAs)

between them.

 A cloud platform controls and manages resources, and dynamically provisions the

networks, servers and storage. Cloud platform applications and network services are

utility, grid and distributed services. Examples of cloud platforms are Amazon EC2,

Microsoft Azure, Google App Engine, Xively, Nimbits, AWS IoT, CISCO IoT, IOx and Fog,

IBM IoT Foundation, TCS Connected Universe Platform.

EVERYTHING AS A SERVICE AND CLOUD SERVICE MODELS:

 Cloud connects the devices, data, applications, services, persons and business. Cloud

services can be considered as distribution service—a service for linking the resources

(computing functions, data store, processing functions, networks, servers and

applications) and for provision of coordinating between the resources.

 Figure 6.2 shows four cloud service models and examples. Cloud computing can be

considered by a simple equation: Cloud Computing = SaaS + Paas + IaaS + DaaS … 6.2

 SaaS means Software as a Service. The software is made available to an application or

service on demand. SaaS is a service model where the applications or services deploy

and host at the cloud, and are made available through the Internet on demand by the

service user. The software control, maintenance, updation to new version and

infrastructure, platform and resource requirements are the responsibilities of the cloud

service provider.

 PaaS means Platform as a Service. The platform is made available to a developer of an

application on demand. PaaS is a service model where the applications and services

develop and execute using the platform (for computing, data store and distribution

services) which is made available through the Internet on demand for the developer of

the applications. The platform, network, resources, maintenance, updation and security

as per the developers’ requirements are the responsibilities of the cloud service

provider.

 IaaS means Infrastructure as a Service. The infrastructure (data stores, servers, data

centres and network) is made available to a user or developer of application on

demand. Developer

installs the OS image, data store and application and controls them at the infrastructure.

IaaS is a service model where the applications develop or use the infrastructure which is

made available through the Internet on demand on rent (pay as per use in multi-tenancy

model) by a developer or user. IaaS computing systems, network and security are the

responsibilities of the cloud service provider. DaaS means Data as a Service

 Data at a data centre is made available to a user or developer of application on demand.

DaaS is a service model where the data store or data warehouse is made available

through the Internet on demand on rent (pay as per use in multi tenancy model) to an

enterprise. The data centre management, 24×7 power, control, network, maintenance,

scale up, data replicating and mirror nodes and systems as well as physical security are

the responsibilities of the data centre service provider.

 Data at a data centre is made available to a user or developer of application on demand.

DaaS is a service model where the data store or data warehouse is made available

through the Internet on demand on rent (pay as per use in multi tenancy model) to an

enterprise. The data centre management, 24×7 power, control, network, maintenance,

scale up, data replicating and mirror nodes and systems as well as physical security are

the responsibilities of the data centre service provider.

