R-19 Syllabus for ECE - INTUK w. e. f. 2019 — 20

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA - 533 003, Andhra Pradesh, India
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Il Year - Il Semester

INTERNET OF THINGS

Course Objectives:
e To learn and understand elements of loTsystem.
e Acquire knowledge about various protocols ofloT.
e To learn and understand design principles and capabilities ofloT.

UNIT I: Introduction to loT

Introduction to 10T, Architectural Overview, Design principles and needed capabilities, Basics of
Networking, M2M and IloT Technology Fundamentals- Devices andgateways, Data
management, Business processes in [0T, Everything as a Service (XaaS), Role ofCloud in IoT,
Security aspects inloT.

UNIT II: Elements of loT

Hardware Components- Computing- Arduino, Raspberry Pi, ARM Cortex-A class processor,
Embedded Devices — ARM Cortex-M class processor, Arm Cortex-MO Processor Architecture,
Block Diagram, Cortex-MO Processor Instruction Set, ARM and Thumb Instruction Set.

UNIT I11: 10T Application Development

Communication, 10T Applications, Sensing, Actuation, 1/0 interfaces.

Software Components- Programming API’s (using Python/Node.js/Arduino) for
CommunicationProtocols-MQTT, ZigBee, CoAP, UDP, TCP, Bluetooth.

Bluetooth Smart Connectivity

Bluetooth overview, Bluetooth Key Versions, Bluetooth Low Energy (BLE) Protocol, Bluetooth,
Low Energy Architecture, PSoC4 BLE architecture and Component Overview.

UNIT IV: Solution framework for 10T applications
Implementation of Device integration, Data acquisitionand integration, Device data storage-
Unstructured data storage on cloud/local server,Authentication, authorization of devices.

UNIT V: IoT Case Studies
IoT case studies and mini projects based on Industrial automation, Transportation,
Agriculture,Healthcare, HomeAutomation.

Text Books:
1 Raj Kamal, “Internet of Things: Architecture and Design Principles”, 1% Edition,
McGraw Hill Education,2017.
2. The Definitive Guide to the ARM Cortex-MO by JosephYiu,2011
3. Vijay Madisetti, ArshdeepBahga, Internet of Things, “A Hands on Approach”,
UniversityPress,2015.

R-19 Syllabus for ECE - INTUK w. e. f. 2019 — 20

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA - 533 003, Andhra Pradesh, India
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

References:
1. Cypress Semiconductor/PSoC4 BLE (Bluetooth Low Energy) Product TrainingModules.
2. Pethuru Raj and Anupama C. Raman, “The Internet of Things: EnablingTechnologies,
Platforms, and Use Cases”, CRC Press,2017.

Course Outcomes:
The student will be able to:
e Understand internet of Things and its hardware and softwarecomponents.
e Interface I/O devices, sensors &communicationmodules.
¢ Remotely monitor data and controldevices.
e Design real time l0T basedapplications

10T
UNIT-1

INTERNET OF THINGS: Internet of Things (loT) is a concept which enables communication

between internetworking devices and applications, whereby physical objects or ‘things’ communicate
through the Internet.

The concept of loT beganwith things classified as identity communication devices. Radio Frequency
Identification Device (RFID) is an example of an identity communication device. Things are tagged to
these devices for their identification in future and can be tracked, controlled and monitored using
remote computers connected through the Internet.

The concept of |oT enables, for example, GPS-based tracking, controlling and monitoring of devices;
machine-to-machine (M2M) communication; connected cars; communication between wearable and
personal devices and Industry 4.0.

1 loT Definition The Internet is a vast global network of connected servers, computers, tablets and

mobiles that is governed by standard protocols for connected systems. It enables sending, receiving, or
communication of information, connectivity with remote servers, cloud and analytics platforms.

Thing in English has number of uses and meanings. In a dictionary, thing is a word used to refer to a
physical object, an action or idea, a situation or activity, in case when one does not wish to be precise.
Example of reference to an object is—an umbrella is a useful thing in rainy days. Streetlight is also
referred to as a thing. Example of reference to an action is— such a thing was not expected from him.
Example of reference to a situation is—such things were in plenty in that regime. Thus, combining both
the terms, the definition of 10T can be explained as follows:

Internet of Things means a network of physical things (objects) sending, receiving, or
communicating information using the Internet or other communication technologies and network just
as the computers, tablets and mobiles do, and thus enabling the monitoring, coordinating or controlling
process across the Internet or another data network.

Another source, defines the term IoT as follows:

Internet of Things is the network of physical objects or ‘things’ embedded with electronics, software,
sensors and connectivity to enable it to achieve greater value and service by exchanging data with the
manufacturer, operator and/or other connected devices. Each thing is uniquely identifiable through its
embedded computing system but is able to interoperate within the existing Internet infrastructure.

loT Vision Internet of Things is a vision where things (wearable watches, alarm clocks, home devices,
surrounding objects) become ‘smart’ and function like living entities by sensing, computing and
communicating through embedded devices which interact with remote objects (servers, clouds,

applications, services and processes) or persons through the Internet or Near-Field Communication
(NFC) etc. The vision of IoT can be understood through Examples 1.1 and 1.2.

Example 1.1:

Through computing, an umbrella can be made to function like a living entity. By installing a tiny
embedded device, which interacts with a web based weather service and the devices owner through the
Internet the following communication can take place. The umbrella, embedded with a circuit for the
purpose of computing and communication connects to the Internet. A website regularly publishes the
weather report. The umbrella receives these reports each morning, analyses the data and issues
reminders to the owner at intermittent intervals around his/her office-going time. The reminders can be
distinguished using differently coloured LED flashes such as red LED flashes for hot and sunny days,
yellow flashes for rainy days.

A reminder can be sent to the owner’s mobile at a pre-set time before leaving for office using NFC,
Bluetooth or SMS technologies. The message can be—(i) Protect yourself from rain. It is going to rain.
Don't forget to carry the umbrella; (ii) Protect yourself from the sun. It is going to be hot and sunny.
Don’t forget to carry the umbrella. The owner can decide to carry or not to carry the umbrella using the
Internet connected umbrella.

Example 1.2:

Streetlights in a city can be made to function like living entities through sensing and computing
using tiny embedded devices that communicate and interact with a central control-and-command
station through the Internet. Assume that each light in a group of 32 streetlights comprises a sensing,
computing and communication circuit. Each group connects to a group-controller (or coordinator)
through Bluetooth or ZigBee. Each controller further connects to the central command-and-control
station through the Internet.

The station receives information about each streetlight in each group in the city at periodic
intervals. The information received is related to the functioning of the 32 lights, the faulty lights, about
the presence or absence of traffic in group vicinity, and about the ambient conditions, whether cloudy,
dark or normal daylight.

The station remotely programs the group controllers, which automatically take an appropriate
action as per the conditions of traffic and light levels. It also directs remedial actions in case a fault
develops in a light at a specific location. Thus, each group in the city is controlled by the ‘Internet of
streetlights’. Figure 1.1 shows the use of the loT concept for streetlights in a city

loT CONCEPTUAL FRAMEWORK Example 1.1 showed a single object (umbrella) communicating with a
central server for acquiring data. The following equation describes a simple conceptual framework of
loT2 :

| Central command-and-cantrol station |

Streetlights Strecilights Serectlights Strecilights
Gireup 1 Group X LH‘"‘"I._I""H’. Group 3 Giroup 4
[Stremtign |— Smeesign: | Sweedight Sareeslight

[Sireciligha Seresdlight] Sareenlight

Streetlight

4 1L 2

Carpup Comtrollers 3 and 4

Crroup Comtrollers | and 2

[Stremitigta Sarceslight | Sareeslight

Stweetight

[Streettigtas F——— Smeestight | Smeetlight Sareelight

Figure 1.1 Use of Internet of Things concepd for streetlights in a city

Physical Object + Controller, Sensor and Actuators + Internet = Internet of Things ... 1.1

Equation 1.1 conceptually describes the Internet of umbrellas as consisting of an umbrella, a controller,
sensor and actuators, and the Internet for connectivity to a web service and a mobile service provider.

Generally, loT consists of an internetwork of devices and physical objects wherein a number of
objects can gather the data at remote locations and communicate to units managing, acquiring,
organising and analysing the data in the processes and services. Example 1.2 showed the number of
streetlights communicating data to the group controller which connects to the central server using the
Internet. A general framework consists of the number of devices communicating data to a data centre or
an enterprise or a cloud server. The loT framework of 10T used in number of applications as well as in
enterprise and business processes is therefore, in general, more complex than the one represented by
Equation 1.1. The equation below conceptually represents the actions and communication of data at
successive levels in loT consisting of internetworked devices and objects.

Gather + Enrich + Stream + Manage + Acquire + Organise and Analyse ... 1.2

Equation 1.2 is an loT conceptual framework for the enterprise processes and services, based on a
suggested loT architecture given by Oracle (Figure 1.5 in Section 1.3). The steps are as as follows:

1. At level 1 data of the devices (things) using sensors or the things gather the pre data from the
internet.

2. A sensor connected to a gateway, functions as a smart sensor (smart sensor refers to a sensor with
computing and communication capacity). The data then enriches at level 2, for example, by transcoding
at the gateway. Transcoding means coding or decoding before data transfer between two entities.

3. A communication management subsystem sends or receives data streams at level 3.

4. Device management, identity management and access management subsystems receive the device’s
data at level 4.

5. A data store or database acquires the data at level 5.

6. Data routed from the devices and things organises and analyses at level 6. For example, data is
analysed for collecting business intelligence in business processes.

The equation below is an alternative conceptual representation for a complex system. It is based on IBM
loT conceptual framework. The equation shows the actions and communication of data at successive
levels in 10T. The framework manages the 10T services using data from internetwork of the devices and
objects, internet and cloud services, and represents the flow of data from the IoT devices for managing
the loT services using the cloud server. Gather + Consolidate + Connect + Collect + Assemble + Manage
and Analyse ... 1.3 Equation 1.3 represents a complex conceptual framework for 10T using cloud-
platformbased processes and services.

The steps are as follows: 1. Levels 1 and 2 consist of a sensor network to gather and consolidate the
data. First level gathers the data of the things (devices) using sensors circuits. The sensor connects to a
gateway. Data then consolidates at the second level, for example, transformation at the gateway at level
2.

2. The gateway at level 2 communicates the data streams between levels 2 and 3. The system uses a
communication-management subsystem at level 3.

3. An information service consists of connect, collect, assemble and manage subsystems at levels 3 and
4. The services render from level 4.

4. Real time series analysis, data analytics and intelligence subsystems are also at levels 4 and 5. A cloud
infrastructure, a data store or database acquires the data at level 5. Figure 1.3 shows blocks and
subsystems for loT in the IBM conceptual framework. New terms in the figure will be explained in the
subsequent chapters. Various conceptual frameworks of 10T find number of applications including the
ones in M2M communication networks, wearable devices, city lighting, security and surveillance and
home automation. Smart systems use the things (nodes) which consist of smart devices, smart objects
and smart services. Smart systems use the user interfaces (Uls), application programming interfaces
(APIs), identification data, sensor data and communication ports.

Canmect + Callect & Assemshle + Manage
Semsors Ciather {Levels 3 and 4) and Clowd Services (Level 53
iLevel 1} Cinfewny
Diaitn Infrmix T
Cansolidath e o Server
Smart Semsor iLevel 23 m“m. Mamage.
ment
Application |
Framework I I
A In-memory
IoT Comrmu- Hig i
mication Data T.ndu‘
ntelligence
Framsework Gateway _ & g
Sensor Doata 1 = [—1 E
. Consali- Calecs | |=
Avpticaion | || 2500 Bl vessase (] EY | 0
- . o fpam
e Framewark Z|| sigh — ings. é
r A
IoT E =
Commu- 10T Comams- Message 5 “_T_r’
r—— nication Bliosaer Manzge
Framework Framework o Time- Relational
sariag I Time Serics
Message Wiew af Service
Cache Diata
Spatial Ssomge
2
Mlmage sxd Real Time
m Connections Amalymes
and —— Masagemen
Sudbverripticas

Figure 1.3 |BM |oT conceptual framewark

loT ARCHITECTURAL VIEW:

An loT system has multiple levels (Equations 1.1 to 1.3). These levels are also known as tiers. A model

enables conceptualisation of a framework. A reference model can be used to depict building blocks,

successive interactions and integration. An example is CISCO’s presentation of a reference model
comprising seven levels (Figure 1.4). New terms in the figure will be explained in the subsequent

chapters.

[Level 7- Colloboration and Processes (lvoly img people and basiness processes b]

CIEC0 seven leveled
3 o8 model

Level 6 Application {Beporting, Anstysis, Comrolp

Level 3- Daaa Absiraction {Aggregation md Access)

Leved 4- Dats Accumulation {Ssorage)

Level 3. Edge Compating (Duis Element Anslvsis md Trassformation)

Level - Commectivity {Communication and Processing Unies)

Leved 1- Piysical Devices mnd Controllers (e things in b T)
|Sensors, mackines, devices, meelligemt edge nodes of different types)

Figure 1.4 An 6T reference madel suggested by CISC0 that gives & conceptual ramework for & genseral

16T system

A reference model could be identified to specify reference architecture. Several reference architectures
are expected to co-exist in the loT domain. Figure 1.5 shows an Oracle suggested loT architecture. New
terms in the figure will be explained in the subsequent chapters.

Giaibver Enrich Siream Manage Acquire (irganise
Dhevice
Identity
Managensent Diata
| ro—— Centre
) . % [Commu. and
Sman Sensor £ | nicason Arcess Munage-
Applicaon 2| Mmmage- vanagens:nt ment
Framew ork ment T N .
1o T Commnss- Frotccol T b | Business
nication Handlers Device Big Inielligence
Fraomework - - ldenmticy Dms —
Caateway Message | [F I}uluhn-\.'l = ||| sinre
Cemmor Applacation Boaser E- — B B L
e Framework Messnpe - Device » L2l
% Cocke | Access = |15 Key Value 1
Application 13 = T P— 3 [Baiz Siwee
Framework =1 | Tl i] o J-|]
) = ment B
nication and F| 3
LT Comnss- anagemsnt Dewice = -
nicaon Frony Mdentity _s
Framework EH:I‘#‘-" ot §
.] 1
LoT Comnss- S— ! on]
RLBEMS
nicaan Drewvice 3
Fromework F—— Manage- B
o
-E-
= Emperprise o
Iniegration

Figure 1.5 Oracle loT architecture [Device identity management means identifying & device,
registering a device for actions after identifying, de-registering the device, assigning unigue
identity to the device Device scceds management meand enabling, disabling the device

An architecture has the following features:
e The architecture serves as a reference in applications of 10T in services and business processes.

® A set of sensors which are smart, capture the data, perform necessary data element analysis and
transformation as per device application framework and connect directly to a communication manager.

® A set of sensor circuits is connected to a gateway possessing separate data capturing, gathering,
computing and communication capabilities. The gateway receives the data in one form at one end and
sends it in another form to the other end.

e The communication-management subsystem consists of protocol handlers, message routers and
message cache.

e This management subsystem has functionalities for device identity database, device identity
management and access management.

e Data routes from the gateway through the Internet and data centre to the application server or
enterprise server which acquires that data.

e Organisation and analysis subsystems enable the services, business processes, enterprise integration
and complex processes (These terms are explained in Chapter 5).

A number of models (CISCO, Purdue and other models) have been proposed at SWG (Sub
Working Group) Teleconference of December 2014. Standards for an architectural framework for the
loT have been developed under IEEE project P2413. IEEE working group is working on a set of guidelines
for the standard IEEE suggested P24133 standard for architecture of loT. It is a reference architecture
which builds upon the reference model(s). The reference architecture covers the definition of basic
architectural building blocks and their integration capability into multi-tiered systems

P2413 architectural framework4 is a reference model that defines relationships among various loT
verticals, for example, transportation and healthcare. P2413 provides for the following:

Follows top-down approach (consider top layer design first and then move to the lowest)

® Does not define new architecture but reinvent existing architectures congruent with it

® Gives a blueprint for data abstraction

e Specifies abstract l1oT domain for various loT domains

e Recommends quality ‘quadruple’ trust that includes protection, security, privacy and safety
e Addresses how to document

e Strives for mitigating architecture divergence(s) Scope of IEEE P2413 standard defines an architectural
framework for the loT. It includes descriptions of various loT domains, definitions of lIoT domain
abstractions and identification of commonalities between different 1oT domains. Smart manufacturing,
smart grid, smart buildings, intelligent transport, smart cities and e-health are different loT domains.
P2413 leverages existing applicable standards. It identifies planned or ongoing projects with a similar or
overlapping scope.5

TECHNOLOGY BEHIND loT: The following entities provide a diverse technologyenvironment and

are examples of technologies, which are involved in loT.

e Hardware (Arduino Raspberry Pi, Intel Galileo, Intel Edison, ARM mBed, Bosch XDK110, Beagle Bone
Black and Wireless SoC)

® Integrated Development Environment (IDE) for developing device software, firmware and APIs
® Protocols [RPL, CoAP, RESTful HTTP, MQTT, XMPP (Extensible Messaging and Presence Protocol)]

e Communication (Powerline Ethernet, RFID, NFC, 6LowPAN, UWB, ZigBee, Bluetooth, WiFi, WiMakx,
2G/3G/4G)

e Network backbone (IPv4, IPv6, UDP and 6LowPAN) e Software (RIOT OS, Contiki OS, Thingsquare Mist
firmware, Eclipse 1oT)

e Internetwork Cloud Platforms/Data Centre (Sense, ThingWorx, Nimbits, Xively, openHAB, AWS loT,
IBM BlueMix, CISCO loT, 10x and Fog, EvryThng, Azure, TCS CUP)

e Machine learning algorithms and software. An example of machine-learning software is GROK from
Numenta Inc. that uses machine intelligence to analyse the streaming data from clouds and uncover
anomalies, has the ability to learn continuously from data and ability to drive action from the output of
GROK’s data models and perform high level of automation for analysing streaming data.

The following five entities can be considered for the five levels behind an loT system (Figure 1.3): 1.
Device platform consisting of device hardware and software using a microcontroller (or SoC or custom
chip), and software for the device APls and web applications 2. Connecting and networking (connectivity
protocols and circuits) enabling internetworking of devices and physical objects called things and
enabling the internet connectivity to remote servers 3. Server and web programming enabling web
applications and web services 4. Cloud platform enabling storage, computing prototype and product
development platforms 5. Online transactions processing, online analytics processing, data analytics,
predictive analytics and knowledge discovery enabling wider applications of an loT system

Server-end Technology :loT servers are application servers, enterprise servers, cloud servers,

data centres and databases. Servers offer the following software components: ® Online platforms e
Devices identification, identity management and their access management e Data accruing, aggregation,
integration, organising and analysing ® Use of web applications, services and business processes

Major Components of lIoT System

Major components of loT devices are:
1. Physical object with embedded software into a hardware.

2. consisting of a microcontroller, firmware, sensors, control unit, actuators and communication
module.

3. Communication module: Software consisting of device APIs and device interface for communication
over the network and communication circuit/port(s), and middleware for creating communication stacks
using 6LowPAN, CoAP, LWM2M, IPv4, IPv6 and other protocols.

4. for actions on messages, information and commands which the devices receive and then output to
the actuators, which enable actions such as glowing LEDs, robotic hand movement etc.

Sensors and Control Units Sensors Sensors are electronic devices that sense the physical environments.
An industrial automation system or robotic system has multiple smart sensors embedded in it. Sensor-
actuator pairs are used in control systems. A smart sensor includes computing and communication
circuits.

Recall Example 1.2 of Internet of streetlights. Each light has sensors for measuring surrounding light-
intensity and surrounding traffic-proximity for sensing and transmitting the data after aggregation over
a period. Sensors are used for measuring temperature, pressure, humidity, light intensity, traffic

proximity, acceleration in an accelerometer, signals in a GPS, proximity sensor, magnetic fields in a
compass, and magnetic intensity in a magnetometer.

Sensors are of two types. The first type gives analog inputs to the control unit. Examples are thermistor,
photoconductor, pressure gauge and Hall sensor. The second type gives digital inputs to the control unit.
Examples are touch sensor, proximity sensor, metal sensor, traffic presence sensor, rotator encoder for
measuring angles and linear encoders for measuring linear displacements. Sensors and circuits are
explained in detail in Chapter 7.

Control Units Most commonly used control unit in loT consists of a Microcontroller Unit (MCU) or a
custom chip. A microcontroller is an integrated chip or core in a VLSI or SoC. Popular microcontrollers
are ATmega 328, ATMega 32u4, ARM Cortex and ARM LPC. An MCU comprises a processor, memory and
several other hardware units which are interfaced together. It also has firmware, timers, interrupt
controllers and functional 10 units.

Additionally, an MCU has application-specific functional circuits designed as per the specific version of a
given microcontroller family. For example, it may possess Analog to Digital Converters (ADC) and Pulse
Width Modulators (PWM). Figure 1.6 shows various functional units in an MCU that are embedded in an
loT device or a physical object. New terms in the figure will be discussed in detail in Chapter 8. Sensor
types—analog and digital output sensors Internet of Things: An Overview 15 Microcontroller

Communication Module

A communication module consists of protocol handlers, message queue and message cache. A device
message-queue inserts the messages in the queue and deletes the messages from the queue in a first-in
first-out manner. A device message-cache stores the received messages.

Representational State Transfer (REST) architectural style can be used for HTTP access by GET, POST,
PUT and DELETE methods for resources and building web services. Communication protocols and REST
style are explained in detail Chapter 3 and 4.

Software IoT software consists of two components—software at the loT device and software at the
loT server. Figure 1.7 shows the software components for the loT device hardware and server.
Embedded software and the components are explained in Chapter 8. Software APls, online component
APIls and web APIs are explained in Section 9.4.

Middleware OpenloT is an open source middleware. It enables communication with sensor clouds
as well as cloud-based ‘sensing as a service’. l10TSyS is a middleware which enables provisioning of
communication stack for smart devices using IPv6, oBIX, 6Lo0OWPAN, CoAP and multiple standards and
protocols. The oBIX is standard XML and web services protocol oBIX (Open Building Information
Xchange).

Operating Systems (0S) Examples of OSs are RIOT, Raspbian, AllJoyn, Spark and Contiki.

RIOT is an operating system for loT devices. RIOT supports both developer and multiple architectures,
including ARM7, Cortex-MO, Cortex-M3, Cortex-M4, standard x86 PCs and TI MSP430.

Raspbian is a popular Raspberry Pi operating system that is based on the Debian distribution of Linux

10T Server for Mamage, Acquire, Organise sod Analyse

I lmegrataos, Colliboeation and Peoccse (lmoalving people and Business processes) and Services I

Appheason (Repoming, Amlyas Commol)

Edge Uomputing

Dats Analyss Data Absiraction { Aggregation ssd Acces) Data Acvamulation {Siorage) sd Mamgemen

Comnectivity (Commmusication and Processing Usits)

T Device Saltware for Gather Data, Envich amd Conmunicalion

| Connectvily Inteslace (Cosmumcation and Peocsssing Uns) |

| Bge Computing Dats Elemem Anlys and Tensforssscs) |

1aT deviee Hardware
Phiyvascal Devices and Conrollers (de Thisgs in loT)
[Seensoes, Machmes, Devices, Iaellipent Edge Modes of Different Types]

Figure 1.7 loT software companents for device hardware

AllJoyn is an open-source OS created by Qualcomm. It is a cross platform OS with APls available for
Android, i0S, OS X, Linux and Windows OSs. It includes a framework and a set of services. It enables the
manufacturers to create compatible devices.

Spark is a distributed, cloud-based loT operating system and web-based IDE. It includes a command-line
interface, support for multiple languages and libraries for working with several different loT devices

Contiki OS7 is an open-source multitasking OS. It includes 6LowPAN, RPL, UDP, DTLS and TCP/IP
protocols which are required in low-power wireless loT devices. Example of applications are street
lighting in smart cities, which requires just 30 kB ROM and 10 kB RAM.

IV Unit — M2M and IoT Technology Fundamentals

UNIT IV: M2M and loT Technology Fundamentals

Devices and gateways, Local and wide area networking, Data management, Business processes
in 10T, Everything as a Service(XaaS), M2M and 10T Analytics, Knowledge Management.

4.1 Devices and gateways

4.1.1 Introduction

» There is a growing market for small-scale embedded processing such as 8-, 16-, and 32-
bit microcontrollers with on-chip RAM and flash memory, 1/O capabilities, and
networking interfaces such as IEEE 802.15.4 that are integrated on tiny System-on-a-
Chip (SoC) solutions.

» Such devices enable very constrained devices with a small footprint of a few mm2 and
with a very low power consumption in the milli- to micro-Watt range, but which are
capable of hosting an entire Transmission Control Protocol/Internet Protocol (TCP/IP)
stack, including a small web server.

» A device is a hardware unit that can sense aspects of it’s environment and/or actuate, i.e.
perform tasks in its environment.

> A device can be characterized as having several properties, including:

* Microcontroller: 8-, 16-, or 32-bit working memory and storage.
* Power Source: Fixed, battery, energy harvesting, or hybrid.

* Sensors and Actuators: Onboard sensors and actuators, or circuitry that allows them
to be connected, sampled, conditioned, and controlled.

« Communication: Cellular, wireless, or wired for LAN and WAN communication.

* Operating System (OS): Main-loop, event-based, real-time, or full featured OS.

* Applications: Simple sensor sampling or more advanced applications.

* User Interface: Display, buttons, or other functions for user interaction.

* Device Management (DM): Provisioning, firmware, bootstrapping, and monitoring.

» Execution Environment (EE): Application lifecycle management and Application
Programming Interface (API).

4.1.1.1 Device types
» Group devices into two categories

« Basic Devices: Devices that only provide the basic services of sensor readings and/or
actuation tasks, and in some cases limited support for user interaction. LAN

IV Unit — M2M and IoT Technology Fundamentals

communication is supported via wired or wireless technology, thus a gateway is
needed to provide the WAN connection.

« Advanced Devices: In this case the devices also host the application logic and a
WAN connection. They may also feature device management and an execution
environment for hosting multiple applications. Gateway devices are most likely to fall
into this category.

4.1.1.2 Deployment scenarios for devices
» Example deployment scenarios for basic devices include:

» Home Alarms: Such devices typically include motion detectors, magnetic
sensors, and smoke detectors. A central unit takes care of the application logic that
calls security and sounds an alarm if a sensor is activated when the alarm is armed.
The central unit also handles the WAN connection towards the alarm central. These
systems are currently often based on proprietary radio protocols.

» Smart Meters: The meters are installed in the households and measure
consumption of, for example, electricity and gas. A concentrator gateway collects data
from the meters, performs aggregation, and periodically transmits the aggregated data
to an application server over a cellular connection. By using a capillary network
technology it’s possible to extend the range of the concentrator gateway by allowing
meters in the periphery to use other meters as extenders, and interface with handheld
devices on the Home Area Network side.

. Building Automation Systems (BASs): Such devices include
thermostats, fans, motion detectors, and boilers, which are controlled by local
facilities, but can also be remotely operated.

» Standalone Smart Thermostats: These use Wi-Fi to communicate with web
services. Examples for advanced devices, meanwhile, include:

» Onboard units in cars that perform remote monitoring and configuration over a
cellular connection.

» Robots and autonomous vehicles such as unmanned aerial vehicles that can
work both autonomously or by remote control using a cellular connection.

* Video cameras for remote monitoring over 3G and LTE.
+ Oil well monitoring and collection of data points from remote devices.

 Connected printers that can be upgraded and serviced remotely.

IV Unit — M2M and IoT Technology Fundamentals

4.1.2 Basic devices

» These devices are often intended for a single purpose, such as measuring air pressure or
closing a valve. |

> In some cases several functions are deployed on the same device, such as monitoring
humidity, temperature, and light level.

» The main focus is on keeping the bill of materials (BOM) as low as possible by using
inexpensive microcontrollers with built-in memory and storage, often on an SoC-
integrated circuit with all main components on one single chip (Figure 5.1).

» Another common goal is to enable battery as a power source, with a lifespan of a year
and upwards by using ultra-low energy microcontrollers.

128-Khyte
System Flash memaory
ar SUnD ARM COrtex-M3 CPU

24 MHz 8-Kbyte SRAM

Wired connectivity

FIGURE 5.1

Example of a microcontroller with integrated STM32W-RFCKIT.

» The microcontroller typically hosts a number of ports that allow integration with sensors
and actuators, such as General Purpose I/0O (GPIO) and an analog-to-digital converter
(ADC) for supporting analog input.

» For certain actuators, such as motors, pulse-width modulation (PWM) can be used.

> As low-power operation is paramount to battery-powered devices, the microcontroller
hosts functions that facilitate sleeping, such as interrupts that can wake up the device on
external and internal events.

IV Unit — M2M and IoT Technology Fundamentals

Some devices even go as far as harvesting energy from their environment, e.g. in the
form of solar, thermal, and physical energy.

To interact with peripherals such as storage or display, it’s common to use a serial
interface such as SPI, 12C, or UART.

These interfaces can also be used to communicate with another microcontroller on the
device.

This is common when the there is a need for offloading certain tasks, or when in some
cases the entire application logic is put on a separate host processor.

It’s not unusual for the micro controller to also contain a security processor,e.g. to
accelerate Advanced Encryption Standard (AES).

This is necessary to allow encrypted communication over the radio link without the need
for a host processor.

The gateway together with the connected devices form a capillary network.

The microcontroller contains most of the radio functions needed for communicating with
the gateway and other devices in the same capillary network.

An external antenna is, however, necessary, and preferably a filter that removes
unwanted frequencies, e.g. a surface acoustic wave (SAW) filter.

Due to limited computational resources, these devices commonly do not use a typical OS.
It may be something as simple as a single-threaded main-loop or a low-end OS such as
FreeRTOS, Atomthreads, AVIX-RT, ChibiOS/RT, ERIKA Enterprise, TinyOS, or
Thingsquare Mist/Contiki.

These OSes offer basic functionality, e.g. memory and concurrency model management,
(sensor and radio) drivers, threading, TCP/IP, and higher level protocol stacks.

The actual application logic is located on top of the OS or in the mainloop.

A typical task for the application logic is to read values from the sensors and to provide
these over the LAN interface in a semantically correct manner with the correct units.

4.1.3 Gateways

>

>

>

>

>

A gateway serves as a translator between different protocols, e.g. between IEEE 802.15.4
or IEEE 802.11, to Ethernet or cellular.

There are many different types of gateways, which can work on different levels in the
protocol layers.

A gateway refers to a device that performs translation of the physical and link layer, but
application layer gateways (ALGSs) are also common.

The latter is preferably avoided because it adds complexity and is a common source of
error in deployments.

Some examples of ALGs include the ZigBee Gateway Device which translates from
ZigBee to SOAP and IP, or gateways that translate from Constrained Application
Protocol (CoAP) to HyperText Transfer Protocol/Representational State Transfer
(HTTP/REST).

>

IV Unit — M2M and IoT Technology Fundamentals

Tthe gateway device is also used for many other tasks, such as data management, device
management, and local applications.

4.1.3.1 Data management

>

Typical functions for data management include performing sensor readings and caching
this data, as well as filtering, concentrating, and aggregating the data before transmitting
it to back-end servers.

4.1.3.2 Local applications

>

>

>

Examples of local applications that can be hosted on a gateway include closed loops,
home alarm logic, and ventilation control, or the data management function above

The benefit of hosting this logic on the gateway instead of in the network is to avoid
downtime in case of WAN connection failure, minimize usage of costly cellular data,

and reduce latency.

To facilitate efficient management of applications on the gateway, it’s necessary to
include an execution environment.

The execution environment is responsible for the lifecycle management of the
applications, including installation, pausing, stopping, configuration, and uninstallation of
the applications.

A common example of an execution environment for embedded environments is OSGi,
which is based on Java: applications are built as one or more Bundles, which are
packaged as Java JAR files and installed using a so-called Management Agent.

The Management Agent can be controlled from, for example, a terminal shell or via a
protocol such as CPE WAN Management Protocol (CWMP).

Bundle packages can be retrieved from the local file system or over HTTP, for example.
OSGi also provides security and versioning for Bundles, which means that
communication between Bundles is controlled, and several versions of them can exist.
The benefit of versioning and the lifecycle management functions is that the OSGi
environment never needs to be shut down when upgrading, thus avoiding downtime in
the system.

Also, Linux can be used as an execution environment.

4.1.3.3 Device management

>

Device management (DM) is an essential part of the loT and provides efficient means to
perform many of the management tasks for devices:

« Provisioning: Initialization (or activation) of devices in regards to configuration and
features to be enabled.

» Device Configuration: Management of device settings and parameters.

» Software Upgrades: Installation of firmware, system software, and applications on the
device.

Y

>

IV Unit — M2M and IoT Technology Fundamentals

 Fault Management: Enables error reporting and access to device status.

Examples of device management standards include TR-069 and OMA-DM.

In the simplest deployment, the devices communicate directly with the DM server.

This is, however, not always optimal or even possible due to network or protocol

constraints, e.g. due to a firewall or mismatching protocols.

In these cases, the gateway functions as mediator between the server and the devices, and

can operate in three different ways:
« If the devices are visible to the DM server, the gateway can simply forward the
messages between the device and the server and is not a visible participant in the
session.
* In case the devices are not visible but understand the DM protocol in use, the
gateway can act as a proxy, essentially acting as a DM server towards the device
and a DM client towards the server.
« For deployments where the devices use a different DM protocol from the server,
the gateway can represent the devices and translate between the different
protocols (e.g. TR-069, OMA-DM, or CoAP).

The devices can be represented either as virtual devices or as part of the gateway

4.1.4 Advanced devices

>

An advanced device are the following:
» A powerful CPU or microcontroller with enough memory and storage to host
advanced applications, such as a printer offering functions for copying, faxing,
printing, and remote management.
* A more advanced user interface with, for example, display and advanced user
input in the form of a keypad or touch screen.
* Video or other high bandwidth functions.

4.1.5 Summary and vision

>

>

The most important of these is security, both in terms of physical security as well as
software and network security.

External factors that can affect the operation of the devices, such as rain, wind,
chemicals, and electromagnetic influences.

One of the major effects that the IoT will have on devices is to disrupt the current value
chains, where one actor controls everything from device to service.

This will happen due to standardization and consolidation of technologies, such as
protocols, OSes, software and programming languages (e.g. Java for embedded devices),
and the business

New types of actors will be able to enter the market, e.g. specialized device vendors,
cloud solution providers, and service providers.

IV Unit — M2M and IoT Technology Fundamentals

» Standardization will improve interoperability between devices, as well as between
devices and services, resulting in commaoditization of both.
» Another expected outcome of improved interoperability is the possibility to reuse the
same device for multiple services;
» for example, a motion detector can be used both for security purposes as well as for
reducing energy consumption by detecting when no one is in the room.
» Thanks to developments in hardware and network technologies, entirely new device
classes and features are expected, such as:
* Battery-powered devices with ultra-low power cellular connections.
* Devices that harvest energy from their environment.
* Smart bandwidth management and protocol switching, i.e. using adaptive RF
mechanisms to swap between, for example, Bluetooth LE and IEEE 802.15.4.

* Multi-radio/multi-rate to switch between bands or bit rates
* Microcontrollers with multicore processors.

* Novel software architectures for better handling of concurrency.
* The possibility to automate the design of integrated circuits based on
business-level logic and use case.

4.2 Local and wide area networking

4.2.1 The need for networking

> A network is created when two or more computing devices exchange data or information.

» The ability to exchange pieces of information using telecommunications technologies has
changed the world

» Devices are known as “nodes” of the network, and they communicate over “links.”

> In modern computing, nodes range from personal computers, servers, and dedicated
packet switching hardware, to smart phones, games consoles, television sets and,
increasingly, heterogeneous devices that are generally characterized by limited resources
and functionalities.

» Limitations typically include computation, energy, memory, communication (range,
bandwidth, reliability, etc.) and application specificity (e.g. specific sensors, actuators,
tasks), etc. Such devices are typically dedicated to specific tasks, such as sensing,
monitoring, and control.

» Network links rely upon a physical medium, such as electrical wires, air, and optical
fibers, over which data can be sent from one network node to the next.

» A selected physical medium determines a number of technical and economic
considerations.

IV Unit — M2M and IoT Technology Fundamentals

Nodes of the network must have an awareness of all nodes in the network with which
they can indirectly communicate. This can be a direct connection over one link (edge, the
transition or communication between two nodes over a link), or knowledge of a route to
the desired (destination) node by communicating through cooperating nodes, over
multiple edges.

FIGURE 5.2
A netwark.

In Figure 5.2 is the simplest form of network that requires knowledge of a route to
communicate between nodes that do not have direct physical links.
if node A wishes to transfer data to node C, it must do so through node B.
Thus, node B must be capable of the following:

e Communicating with both node A and node C,

e advertising to node A and node C that it can act as an intermediary.
Basic networking requirements have become explicit.
It is essential to uniquely identify each node in the network, and it is necessary to have
cooperating nodes capable of linking nodes between which physical links do not exist.
In modern computing, this equates to IP addresses and routing tables.
Consider the differences between streaming video from a surveillance camera, for
example, and an intrusion-detection system based on a passive sensor.
Streaming video requires high bandwidth, whereas transmitting a small amount of
information about the detection of an intruder requires a tiny amount of bandwidth, but a
higher degree of reliability with respect to both the communications link and the accuracy
of the detection.
Node A is a device that can only communicate over a particular wireless channel of
limited range
Node B is cap able of communicating with node A, but also with an application server
with service capabilities (node C, with which it can connect using wired Ethernet, e.g.
over a complex link using a standardized protocol and/or web service such as REST at
the application layer) over the Internet.
Node B may be connected to a sub-network (of child nodes, similar to node A) of up to
thousands of similarly constrained devices (Al. . .An).
These thousands of devices may be equipped with sensors, deployed specifically to
monitor some physical phenomenon.
They can only communicate with one another and node B, and may communicate with
each other over single or multiple hops.

IV Unit — M2M and IoT Technology Fundamentals

Consider that the owner of the WSN wishes to obtain the data from each of the (Al. .
.An) devices in the WSN.

However, the preferred way to read the data is through a web browser, or application on a
smartphone/tablet, via node C.

Therefore, a networking solution is required to transfer all of the WSN data from nodes
Al.. .An to node C, through node B.

This concept maps directly to the M2M Functional Architecture, where nodes Al. . .An
are an M2M Area Network, node B is an M2M Gateway, and node C is representative of
M2M Service Capabilities and Applications.

A Local Area Network (LAN) was traditionally distinguishable from a Wide Area
Network (WAN) based on the geographic coverage requirements of the network, and the
need for third party, or leased, communication infrastructure.

In the case of the LAN, a smaller geographic region is covered, such as a commercial
building, an office block, or a home, and does not require any leased communications
infrastructure.

WANSs provide communication links that cover longer distances, such as across
metropolitan, regional, or by textbook definition, global geographic areas.

In practice, WANSs are often used to link LANs and Metropolitan Area Networks (MAN)

LANs tended to cover distances of tens to hundreds of meters, whereas WAN links
spanned tens to hundreds of kilometers.

The most popular wired LAN technology is Ethernet. Wi-Fi is the most prevalent
wireless LAN (WLAN) technology.

Wireless WAN (WWAN), as a descriptor, covers cellular mobile telecommunication
networks, a significant departure from WLAN in terms of technology, coverage, network
infrastructure, and architecture.

Difference between LAN and WAN

LAN stands for Local Area Whereas WAN stands for Wide Area

1. Network. Network.

LAN’s ownership is But WAN’s ownership can be private
2. private. or public.
3. The speed of LAN is While the speed of WAN is slower

IV Unit — M2M and IoT Technology Fundamentals

high(more than WAN). than LAN.

The propagation delay is Whereas the propagation delay in
4. short in LAN. WAN is long(longer than LAN).

There is less congestion in While there is more congestion in
5. LAN(local area network). WAN(Wide Area Network).

There is more fault While there is less fault tolerance in
6. tolerance in LAN. WAN.

LAN’s design and While it’s design and maintenance is
7. maintenance is easy. difficult than LAN.

The current generation of WWAN technology includes LTE (or 4G) and WiMAX.
Acting as a link between LANs and Wireless Personal Area Networks (WPANS), M2M
Gateway Devices typically include cellular transceivers, and allow seamless IP-
connectivity over heterogeneous physical media.

In the home, the “wireless router” typically behaves as a link between the Wi-Fi (WLAN,
and thus connected laptops, tablets, smartphones, etc. commonly found in the home) and
Digital Subscriber Line (DSL) broadband connectivity, traditionally arriving over
telephone lines. “DSL” refers to Internet access carried over legacy (wired) telephone
networks, and encompasses numerous standards and variants.

“Broadband” indicates the ability to carry multiple signals over a number of frequencies,
with a typical minimum bandwidth of 256 kbps.

In the office, the Wi-Fi wireless access points are typically connected to the wired
corporate (Ethernet) LAN, which is subsequently connected to a wider area network and
Internet backbone, typically provided by an Internet Service Provider (ISP).

The need exists to interconnect devices (generally integrated microsystems) with central
data processing and decision support systems, in addition to one another.

In WLAN technologies, a geographic region can be covered by a network of devices that
connect to the Internet via a gateway device, which may use a leased network connection.
For example, a gateway device can access the IP backbone over a WWAN (e.g.
GPRS/UMTS/LTE/WiIMAX) link, or over a WLAN link.

10

IV Unit — M2M and IoT Technology Fundamentals

WPAN:Ss is the for newer standards that govern low-power, low-rate networks suitable for
M2M and loT applications.

“IEEE 802.15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS).

This is similar to the evolution of Wi-Fi WLAN technology (e.g. IEEE 802.11, a, b, g, n,
etc.).

Communication ranges for IEEE 802.15.4 technology may range from tens of meters to
kilometers.

Devices in an M2M Area Network connect to the IP backbone, or Network Domain, via
an M2M Gateway device.

Gateway device is equipped with a cellular transceiver that is physically compatible with
UMTS or LTE-Advanced, for example, WWAN.

The same device will also be equipped with the necessary transceiver to communicate on
the same physical medium as the M2M Area Network(s) in the M2M Device Domain.
M2M Area Networks may include a plethora of wired or wireless technologies,
including: Bluetooth LE/Smart, IEEE 802.15.4 (LR-WPAN; e.g. ZigBee, IETF
6LOWPAN, RPL, CoAP, ISA100.11a, WirelessHART, etc.),

The “Internet of Things,” as a term, originated from Radio Frequency Identification
(RFID) research, wherein the original 1oT concept was that any RFID-tagged “thing”
could have a virtual presence on the “Internet.”

RFID ,bar codes and QR codes use different technological means to achieve the same
result.

M2M applications become more synonymous with 10T, it is necessary to understand the
technologies, limitations, and implications of the networking infrastructure.

4.2.2 \Wide area networking

>

WANSs are typically required to bridge the M2M Device Domain to the backhaul
network, thus providing a proxy that allows information (data, commands etc) to traverse
heterogeneous networks.

It is used to provide communications services between the M2M service enablement and
the physical deployments of devices in the field.

WAN is capable of providing the bi-directional communications links between services
and devices which is achieved by means of physical and logical proxy.

The proxy is achieved using an M2M Gateway Device.

M2M Gateway Device is typically an integrated microsystem with multiple
communications interfaces and computational capabilities.

It is a critical component in the functional architecture, as it must be capable of handling
all of the necessary interfacing to the M2M Service Capabilities and Management
Functions.

11

IV Unit — M2M and IoT Technology Fundamentals

Example: consider a device that incorporates both an IEEE 802.15.4-compliant
transceiver, capable of communicating with a capillary network of similarly equipped
devices, and a cellular transceiver that connects to the Internet using the UMTS network.

Transceivers (sometimes referred to as modems) are typically available as hardware
modules with which the central intelligence of the device (gateway or cell phone)
interacts by means of standardized AT Commands.

This device is now capable of acting as a physical proxy between the LR-WPAN, or
M2M Device Domain, and the M2M Network Domain.

The latest ETSI M2M Functional Architecture is illustrated in Figure 5.3.

M2M Applications

1211
Management
M2M Service capabilities Functions
MNetwork Domain Core Metwork (CN)
retwark
Managerm ent
Functions
Access hetwork
s
.._._._._._._.___._._‘.‘_._._._._._._._._._._*_._.___._._._._ _____________________ —
P12l
Applications
WM Service
Capabhilities
M2 Gateway
Device and Gateway
Domain T2 b
Applications
R2M Service
capabilties
v hi2hd D evice
FIGURE 5.3

ETSI M2 Functional Architecture.

The Access and Core Network in the ETSI M2M Functional Architecture are foreseen to
be operated by a Mobile Network Operator (MNO), and can be thought of simply as the
“WAN?” for the purposes of interconnecting devices and backhaul networks (Internet),
thus, M2M Applications, Service Capabilities, Management Functions, and Network
Management Functions.
The WAN covers larger geographic regions using wireless as well as wire-based access.
WAN technologies include cellular networks (using several generations of technologies),
DSL, WiMAX, Wi-Fi, Ethernet, Satellite, and so forth.
The WAN delivers a packet-based service using IP as default. Circuit-based services can
also be used in certain situations.
important functions of the WAN include:

* The main function of the WAN is to establish connectivity between capillary

12

IV Unit — M2M and IoT Technology Fundamentals

networks, hosting sensors, and actuators, and the M2M service enablement.

« The default connectivity mode is packet-based using the IP family of
technologies.

« Many different types of messages can be sent and received. for example, a
message sent from a sensor in an M2M Area Network and resulting in an SMS
received from the M2M Gateway or Application

* Use of identity management techniques (primarily of M2M devices) in cellular

and non-cellular domains to grant right-of-use of the WAN resource.

« The following techniques are used for these purposes:

v' MCIM (Machine Communications Identity Module) for remote
provisioning of SIM targeting M2M devices.

v" XSIM (x-Subscription Identity Module), like SIM, USIM, ISIM.

v Interface identifiers, an example of which is the MAC address of
the device, typically stored in hardware.

v Authentication/registration type of functions (device focused).

v' Authentication, Authorization, and Accounting (AAA), such as
RADIUS services.

v" Dynamic Host Configuration Protocol (DHCP), e.g. employing
deployment-specific configuration parameters specified by device,
user, or application-specific parameters residing in a directory.

v’ Subscription services (device-focused).

v" Directory services, e.g. containing user profiles and various device
(s) parameter(s), setting(s), and combinations thereof.

« M2M-specific considerations include, in particular:

v MCIM (cf. 3GPP SA3 work).

v" User Data Management (e.g. subscription management).

v" Network optimizations (cf. 3GPP SA2 work).

4.2.2.1 3rd generation partnership project technologies and machine type communications

» Machine Type Communications (MTC) is heavily referred to in the ETSI documentation.

» MTC refers to small amounts of data that are communicated between machines (devices
to back-end services and vice versa) without the need for any human intervention. In the
3rd Generation Partnership Project (3GPP), MTC is used to refer to all M2M
communication.

4.2.3 Local area networking

> Capillary networks are typically autonomous, self-contained systems of M2M devices
that may be connected to the cloud via an appropriate Gateway.

13

IV Unit — M2M and IoT Technology Fundamentals

Application
Server

<& Sensor |
Sensor @
Wire WiFI ;
: . GW/AS Access
GW/AS - Core Nework/ 2G/3G/ (Ethernet/lP Point
N | Internet/Cloud) LTEEETH .)}
S .) IPVB/BLOWPAN Actuator)

'\""r\ Repeater

"
N

0Sen sor o

Sensor
|}

FIGURE 5.4
Capillary networks and their inside view.

They are often deployed in controlled environments such as vehicles, buildings,
apartments, factories, bodies, etc. (Figure 5.4) in order to collect sensor measurements,
generate events should sensing thresholds be breached, and sometimes control specific
features of interest (e.g. heart rate of a patient, environmental data on a factory floor, car
speed, air conditioning appliances, etc.).

There will exist numerous capillary networks that will employ short-range wired and
wireless communication and networking technologies.

For certain application areas, there is a need for autonomous local operation of the
capillary network.

In the event that application-level logic is enforceable via the cloud, some will still need
to be managed locally.

The complexity of the local application logic varies by application.

For example, a building automation network may need local control loop functionality
for autonomous operation, but can rely on external communication for configuration of
control schemas and parameters.

The M2M devices in a capillary network are typically thought to be low-capability nodes
(e.g. battery operated, with limited security capabilities) for cost reasons, and should
operate autonomously.

For this reason, a GW/application server will naturally also be part of the architected
solution for capillary networks.

More and more (currently closed) capillary networks will open up for integration with the
enterprise back end systems.

For capillary networks that expose devices to the cloud/Internet, IP is envisioned to be
the common waist.

14

IV Unit — M2M and IoT Technology Fundamentals

IPv6 will be the protocol of choice for M2M devices that operate a 6LoWPAN-based
stack.

IPv4 will still be used for capillary networks operating in non-6LoWPAN IP stacks (e.g.
Wi-Fi capillary networks).

In terms of short-range communication technology convergence, an IPv6 stack with
6LOWPAN running above the physical medium is expected.

The development of the IEEE 802.15.49 standard, a physical layer amendment to support
Smart Utility Networks (SUN) _ smart grid in particular _ designed to operate over much
larger geographic distances (wireless links spanning tens of kilometers), and specifically
designed for minimal infrastructure, low power, many-device networks.

4.2.3.1 Deployment considerations

>

>

There are increasing numbers of innovative 10T applications (hardware and software)
marketed as consumer products.

These range from intelligent thermostats for effectively managing comfort and energy
use in the home, to precision gardening tools (sampling weather conditions, soil moisture,
etc.).

Scaling up for industrial applications and moving from laboratories into the real world
creates significant challenges that are not yet fully understood.

Low-rate, low-power communications technologies are known to be “lossy.” The reasons
can relate to environmental factors, which impact upon radio performance, technical
factors such as performance trade-offs based on the characteristics of medium access
control and routing protocols, and physical limitations of devices (including software
architectures, runtime and execution environments, computational capabilities, energy
availability, local storage, etc), and practical factors such as maintenance opportunities
(scheduled, remote, accessibility, etc.).

Numerous deployment environments (factories, buildings, roads, vehicles) are expected
in addition to wildly varying application scenarios and operational and functional
requirements of the systems.

ETSI describes a set of use cases, namely eHealth, Connected Consumer, Automotive,
Smart Grid, and Smart Meter, that only capture some of the breadth of potential
deployment scenarios and environments that are possible.

Assuming that IP connectivity can be the fundamental mechanism to bridge
heterogeneous physical and link layer technologies, it stands to reason that fragmentation
can continue such that appropriate technologies are available for the breadth of potential
application scenarios.

4.2.3.2 Key technologies

>

Power Line Communication (PLC) refers to communicating over power (or phone, coax,
etc.) lines.

15

IV Unit — M2M and IoT Technology Fundamentals

This amounts to pulsing, with various degrees of power and frequency, the electrical lines
used for power distribution.

PLC comes in numerous flavors. At low frequencies (tens to hundreds of Hertz) it is
possible to communicate over kilometers with low bit rates (hundreds of bits per second).
Typically, this type of communication was used for remote metering, and was seen as
potentially useful for the smart grid.

Enhancements to allow higher bit rates have led to the possibility of delivering broadband
connectivity over power lines.

There have been a number of attempts to standardize PLC in recent years. NIST recently
included IEEE 1901 and ITU-T G.hn as standards for further review for potential use in
the smart grid in the United States.

LAN (and WLAN) continues to be important technology for M2M and IoT applications.
This is due to the high bandwidth, reliability, and legacy of the technologies. Where
power is not a limiting factor, and high bandwidth is required, devices may connect
seamlessly to the Internet via Ethernet (IEEE 802.3) or Wi-Fi (IEEE 802.11).

The IEEE 802.11 (Wi-Fi) standards continue to evolve in various directions to improve
certain operational characteristics depending on usage scenario.

A widely adopted recent release was IEEE 802.11n, which was specifically designed to
enhance throughput (typically useful for streaming multimedia).

Ongoing work such as IEEE 802.11ac is developing an even higher throughput version to
replace this, focusing efforts in the 5 GHz band.

IEEE 802.11ah is allow a number of networked devices to cooperate in the ,1 GHz (ISM)
band.

The idea is to exploit collaboration (relaying, or networking in other words) to extend
range, and improve energy efficiency (by cycling the active periods of the radio
transceiver).

Bluetooth Low Energy (BLE; “Bluetooth Smart™) is designed for short-range (,50 m)
applications in healthcare, fitness, security, etc., where high data rates (millions of bits
per second) are required to enable application functionality.

It is deliberately low cost and energy efficient by design, and has been integrated into the
majority of recent smart phones.

Low-Rate, Low-Power Networks are another key technology that form the basis of the
loT.

For example, the IEEE 802.15.4 family of standards was one of the first used in practical
research and experimentation in the field of WSNs.

Low-Rate Wireless Personal Area Networks (LR-WPAN)- It covered the Physical and
Medium Access Control layers, specifying use in the ISM bands at frequencies around
433 MHz, 868/915 MHz, and 2.4 GHz. This supported data rates of between 20 kbps up
to 256 kbps, depending on selected band, over distances ranging from tens of meters to
kilometers.

16

IV Unit — M2M and IoT Technology Fundamentals

Radio duty cycling refers to managing the active periods of the Radio Frequency
Integrated Circuit (RFIC) during transmission, and listening to the medium.

IEEE 802.15.4 defines the PHY layer, and in some instances the MAC layer, upon which
a number of low-energy communications specifications have been built. Namely, ZigBee.
Recent developments, such as the PHY Amendment for Smart Utility Networks (SUN),
IEEE 802.15.49, seek to extend the operational coverage of these networks up to tens of
kilometers in order to provide extremely wide geographic coverage with minimal
infrastructure.

6LOWPAN (IPv6 Over Low Power Wireless Personal Area Networks) was developed
initially by the 6LoOWPAN Working Group (WG) of the IETF as a mechanism to
transport IPv6 over IEEE 802.15.4-2003 networks.

Specifically, methods to handle fragmentation, reassembly, and header compression were
the primary objectives.

The WG also developed methods to handle address autoconfiguration, the hooks for
mesh networking, and network management.

RPL (IPv6 Routing Protocol for Low Power and Lossy Networks) was developed by the
IETF Routing over Low Power and Lossy Networks (RoLL) WG.

They defined Low Power Lossy Networks as those typically characterized by high data
loss rates, low data rates, and general instability.

No specific physical or medium access control technologies were specified, but typical
links considered include PLC, IEEE 802.15.4, and low-power Wi-Fi.

Typical use cases involve the collection of data from many (for example) sensing points,
nodes towards a sink, or alternatively, flooding information from a sink to many nodes in
the network.

Thus, the well-known concept of a Directed Acyclic Graph (DAG) structure was
concentrated to a Destination Oriented DAG (DODAG) for the purposes of initial
development.

The group defined a new ICMPv6 message, with three possible types, specific for RPL
networks.

These include a DAG Information Object (D10), that allows a node to discover an RPL
instance, configuration parameters and parents, a DAG Information Solicitation (DIS) to
allow requests for DIOs from RPL nodes, and Destination Advertisement Object (DAO),
used to propagate destination information upwards (i.e. towards the root) along the
DODAG (specific RPL details are available in RFC 6550 and related RFCs).

The Trickle Algorithm is an important enabler of RPL message exchange.

CoAP (Constrained Application Protocol) is being developed by the IETF Constrained
RESTTful Environments (CoRE) WG as a specialized web transfer protocol for use with
severe computational and communication constraints typically characteristic of M2M and
loT applications.

17

IV Unit — M2M and IoT Technology Fundamentals

4.3 Data management

4.3.1 Introduction

> In the era of M2M, where billions of devices interact and generate data at exponential
growth rates, data management is of critical importance as it sets the basis upon which
any other processes can rely and operate

» Some of the key characteristics of M2M data include:

* Big Data: Huge amounts of data are generated, capturing detailed aspects of the
processes where devices are involved.

» Heterogeneous Data: The data is produced by a huge variety of devices and is
itself highly heterogeneous, differing on sampling rate, quality of captured values,
etc.

 Real-World Data: The overwhelming majority of the M2M data relates to real-
world processes and is dependent on the environment they interact with.

* Real-Time Data: M2M data is generated in real-time and overwhelmingly can
be communicated also in a very timely manner.

» Temporal Data: The overwhelming majority of M2M data is of temporal
nature, measuring the environment over time.

« Spatial Data: Increasingly, the data generated by M2M interactions are not only
captured by mobile devices, but also coupled to interactions in specific locations,
and their assessment may dynamically vary depending on the location.

» Polymorphic Data: The data acquired and used by M2M processes may be
complex and involve various data, which can also obtain different meanings
depending on the semantics applied and the process they participate in.

 Proprietary Data: Up to now, due to monolithic application development, a
significant amount of M2M data is stored and captured in proprietary formats.
However, increasingly due to the interactions with heterogeneous devices and
stakeholders, open approaches for data storage and exchange are used.

« Security and Privacy Data Aspects: Due to the detailed capturing of
interactions by M2M, analysis of the obtained data has a high risk of leaking
private information and usage patterns, as well as compromising security.\

4.3.2 Managing M2M data

18

IV Unit — M2M and IoT Technology Fundamentals

» The data flow from the moment it is sensed (e.g. by a wireless sensor node) up to the
moment it reaches the backend system has been processed manifold (and often
redundantly), either to adjust its representation in order to be easily integrated by the
diverse applications, or to compute on it in order to extract and associate it with
respective business intelligence (e.g. business process affected, etc.).

Enterprise Services

Information Stream
Business / / /
Evaluation / 4 /. /

Data Processing
Network Point

in-transit
information Stream
Adaptation
{computation)

Data Processing
Network Point

Data Processing ; { |
Network Point g
Information Stream |

Generation ;
(sensing) 8 Sensor Networks

{Device Layer)

FIGURE 5.5
M2M data from point of generation to business assessment.

> In Figure 5.5, we see a number of data processing network points between the machine
and the enterprise that act on the datastream (or simply forwarding it) based on their end-
application needs and existing context.

» Dealing with M2M data may be decomposed into several stages.

> Additionally, the degree of focus in each stage heavily depends on the actual usage
requirements put upon the data as well as the infrastructure.

4.3.2.1 Data generation

> Data generation is the first stage within which data is generated actively or passively
from the device, system, or as a result of its interactions.

» The sampling of data generation depends on the device and its capabilities as well as
potentially the application needs.

» Usually default behaviors for data generation exist, which are usually further
configurable to strike a good benefit between involved costs, e.g. frequency of data
collection vs. energy used in the case of WSNs, etc.

19

IV Unit — M2M and IoT Technology Fundamentals

4.3.2.2 Data acquisition

>

>

Data acquisition deals with the collection of data (actively or passively) from the device,
system, or as a result of its interactions.

The data acquisition systems usually communicate with distributed devices over wired or
wireless links to acquire the needed data, and need to respect security, protocol, and
application requirements.

The nature of acquisition varies, e.g. it could be continuous monitoring, interval-poll,
event-based, etc.

The frequency of data acquisition overwhelmingly depends on, or is customized by, the
application requirements (or their common denominator).

The data acquired at this stage (for non-closed local control loops) may also differ from
the data actually generated.

In simple scenarios, due to customized filters deployed at the device, a fraction of the
generated data may be communicated.

Data aggregation and even on-device computation of the data may result in
communication of key performance indicators of interest to the application.

4.3.2.3 Data validation

>

>

Data acquired must be checked for correctness and meaningfulness within the specific
operating context.

This is usually done based on rules, semantic annotations, or other logic.

The acquired data may not conform to expectations and data may be intentionally or
unintentionally corrupted during transmission, altered, or not make sense in the business
context.

As real-world processes depend on valid data to draw business-relevant decisions

Several known methods are deployed for consistency and data type checking;

for example, imposed range limits on the values acquired, logic checks, uniqueness,
correct time-stamping, etc.

In addition, semantics may play an increasing role here, as the same data may have
different meanings in various operating contexts, and via semantics one can benefit while
attempting to validate them.

Another part of the validation may deal with fallback actions such as requesting the data
again if checks fail, or attempts to “repair” partially failed data.

Failure to validate may result in security breaches.

Tampered-with data fed to an application is a well known security risk as its effects may
lead to attacks on other services, privilege escalation, denial of service, database
corruption, etc.

20

IV Unit — M2M and IoT Technology Fundamentals

4.3.2.4 Data storage

The data generated by M2M interactions is what is commonly referred to as “Big Data.”
Machines generate an incredible amount of information that is captured and needs to be
stored for further processing.

As this is proving challenging due to the size of information, a balance between its
business usage vs. storage needs to be considered; that is, only the fraction of the data
relevant to a business need may be stored for future reference.

However, one has to carefully consider what the value of such data is to business not only
in current processes, but also potentially other directions that may be followed in the
future by the company as different assessments of the same data may provide other,
hidden competitive advantages in the future.

Due to the massive amounts of M2M data, as well as their envisioned processing (e.g.
searching), specialized technologies such as massively parallel processing DBs,
distributed file systems, cloud computing platforms, etc. are needed.

4.3.2.5 Data processing

>

>

Data processing enables working with the data that is either at rest (already stored) or is
in-motion (e.g. stream data).

The scope of this processing is to operate on the data at a low level and “enhance” them
for future needs.

Typical examples include data adjustment during which it might be necessary to
normalize data, introduce an estimate for a value that is missing, re-order incoming data
by adjusting timestamps, etc.

Similarly, aggregation of data or general calculation functions may be operated on two or
more data streams and mathematical functions applied on their composition.

Another example is the transformation of incoming data; for example, a stream can be
converted on the fly (e.g. temperature values are converted from _Fto _C), or repackaged
in another data model, etc. Missing or invalid data that is needed for the specific time-slot
may be forecasted and used until, in a future interaction, the actual data comes into the
system.

4.3.2.6 Data remanence

>

>

>

Even if the data is erased or removed, residues may still remain in electronic media, and
may be easily recovered by third parties _ often referred to as data remanence.

Several techniques have been developed to deal with this, such as overwriting,
degaussing, encryption, and physical destruction.

For M2M, not only the DBs where the M2M data is collected, but also the points of
action, which generate the data, or the individual nodes in between, which may cache it.

21

>

IV Unit — M2M and IoT Technology Fundamentals

At the current technology pace, those buffers (e.g. on device) are expected to be less at
risk since their limited size means that after a specific time has elapsed, new data will
occupy that space; hence, the window of opportunity is rather small.

In addition, for large-scale infrastructures the cost of potentially acquiring “deleted” data
may be large; hence, their hubs or collection end-points, such as the DBs who have such
low cost, may be more at risk.

4.3.2.7 Data analysis

>

>

Data available in the repositories can be subjected to analysis with the aim to obtain the
information they encapsulate and use it for supporting decision-making processes.

The analysis of data at this stage heavily depends on the domain and the context of the
data.

For instance, business intelligence tools process the data with a focus on the aggregation
and key performance indicator assessment.

Data mining focuses on discovering knowledge, usually in conjunction with predictive
goals.

Statistics can also be used on the data to assess them quantitatively (descriptive statistics),
find their main characteristics (exploratory data analysis), confirm a specific hypothesis
(confirmatory data analysis), discover knowledge (data mining), and for machine
learning, etc.

This stage is the basis for any sophisticated applications that take advantage of the
information hidden directly or indirectly on the data.

4.3.3 Considerations for M2M data

>

The M2M infrastructure in place heavily depends on real-world processes, implying also
that a big percentage of data will be generated by machines that interact with the real-
world environment, while the rest will be purely virtual data.

Many of the machines generating this data, which can then be communicated to others
(e.g. analytics specialists).

The end-beneficiaries might acquire information, but do not necessarily need to have
access or to process the data by themselves.

There is a rise of specialists in the various stages of M2M data management that will
cooperate with application providers, users, etc. for the common benefit.

Sharing of data and usage in multiple applications, security and trust are of key
importance.

Security is mandatory for enabling confidentiality, integrity, availability, authenticity,
and nonrepudiation of data from the moment of generation to consumption.

Due to the large-scale IoT infrastructure, heterogeneous devices, and stakeholders
involved, this will be challenging.

22

IV Unit — M2M and IoT Technology Fundamentals

> In addition, trust will be another major issue, as even if data is securely communicated or
verified, the level of trust based on them will impact the decision-making process and
risk analysis.

» Managing security and trust in the highly federated M2M-envisioned infrastructures
poses a significant challenge, especially for mission critical applications that also exercise
control.

> Privacy is also expected to be a significant issue in 10T infrastructures.

» Currently, a lot of emphasis is put on acquiring the data, and no real solutions exist for
large-scale systems to share data in a controlled way.

» Once data is shared, the originator has no more control over its lifetime.

> A typical example here constitutes the usage of private citizen data, which could be
controllably shared as wished; it should also be possible to (partially) revoke that right at
will.

> Data Science in the 10T era is a cross-discipline approach building on mathematics,
statistics, high-performance computing, modeling, machine learning, engineering, etc.
that will play a key role in understanding the data, assessing their information at large
scale, and hopefully enabling the better studying of complex systems of systems and their
emergent characteristics.

4.3.4 Conclusions

» Data and its management hold the key to unveiling the true power of M2M and IoT.

» To do so, however, we have to think and develop approaches that go beyond simple data
collection, and enable the management of their whole lifecycle at very large scale, while
in parallel considering the special needs and the usage requirements posed by specific
domains or applications.

4.4 Business processes in 10T

4.4.1 Introduction

» A business process refers to a series of activities, often a collection of interrelated processes
in a logical sequence, within an enterprise, leading to a specific result.

» There are several types of business processes such as management, operational, and
supporting, all of which aim at achieving a specific mission objective.

» As business processes usually span several systems and may get very complex, several
methods and techniques have been developed for their modeling, such as the Business
Process Model and Notation (BPMN), which graphically represents business processes in a
business process model.

23

IV Unit — M2M and IoT Technology Fundamentals

» Several key business processes in modern enterprise systems heavily rely on interaction with
real-world processes, largely for monitoring, but also for some control (management), in
order to take business-critical decisions and optimize actions across the enterprise.

>
>

Virtual World:
Enterprise Systems

Global Business
Networks

I
| | 1
Punchcard Keyboard Barcode I UbiComp—‘l"echnoIogies
|
1

Cost Gap for Data Entry

Machine (autemated) Sensing

|
.

e — Human Assisted Sensing >

Real World

J
X

Real-World Relevant Processes

FIGURE 5.6

The decreasing cost of information exchange between the real-world and enterprise
systems with the advancement of M2M.

In Figure 5.6, the dramatic reduction of the data acquisition from the real world

Initially all these interactions were human-based (e.g. via a keyboard) or human-assisted
(e.g. via a barcode scanner); however, with the prevalence of RFID, WSNSs, and advanced
networked embedded devices, all information exchange between the real-world and
enterprise systems can be done automatically without any human intervention and at
blazing speeds.

In the M2M era, connected devices can be clearly identified, and with the help of
services, this integration leads to active participation of the devices to the business
processes.

Existing modeling tools are hardly designed to specify aspects of the real world in
modeling environments and capture their full characteristics. To this direction, the
existence of SOA-ready devices

24

IV Unit — M2M and IoT Technology Fundamentals

> (i.e. devices that offer their functionalities as a web service) simplifies the integration and
interaction as they can be considered as a traditional web service that runs on a specific

device.

A layered approach for developing, deploying, and managing WSN applications that

natively interact with enterprise information systems such as a business process engine

and the processes running therein is proposed and assessed.

M2M and 0T empower business processes to acquire very detailed data about the

operations, and be informed about the conditions in the real world in a very timely
manner.

4.4.2 10T integration with enterprise systems

» M2M communication and the vision of the 10T pose a new era where billions of devices

will need to interact with each other and exchange information in order to fulfill their
purpose.

Business Process supported by the Cloud of Things

—t
2 Enterprise
g z Systems
f A K
| \
I\ AR
1 4 \ (IR
! \ A
| l \ (I
I ! \ [
I] \ \ \
= 4 Ad 1 \
@ @ Cloudof =~ ' %
Teo \ Things ! .
\\ - \ \ Direct access
\ @ \ \ toweh
\ \ 1 service
e \ \ \ enabled
@ @ \ | \ devices
\ \ | \

\ |} \
Dynamlc DI‘CCNEN of Devices / SEI’VICES & P2P Communication

w S ﬁ @ @ , |®

-WSN-

Cross-Domain Heterogeneous Device Collaboration / M2M
{Cooperating Objects / Internet of Things)

FIGURE 5.7

Cross-layer SOA Collaboration / M2B
{Internet of Services /Cloud of Things)

A collaborative infrastructure driven by M2M and MZ2B.

25

IV Unit — M2M and IoT Technology Fundamentals

> In Figure 5.7, cross-layer interaction and cooperation can be pursued:

« at the M2M level, where the machines cooperate with each other
(machine-focused interactions)

* at the machine-to-business (M2B) layer, where machines cooperate also
with network-based services, business systems (business service focus),
and applications.

» Several devices in the lowest layer. These can communicate with each other over short-
range protocols (e.g. over ZigBee, Bluetooth), or even longer distances (e.g. over Wi-Fi,
etc.).

» Some of them may host services (e.g. REST services), and even have dynamic discovery
capabilities based on the communication protocol or other capabilities (e.g. WS-Eventing
in DPWS).

» Some of them may be very resource constrained, which means that auxiliary gateways
could provide additional support such as mediation of communication, protocol
translation, etc.

> Independent of whether the devices are able to discover and interact with other devices
and systems directly or via the support of the infrastructure, the M2M interactions enable
them to empower several applications and interact with each other in order to fulfill their
goals.

» Promising real-world integration is done using a service-oriented approach by interacting
directly with the respective physical elements, for example, via web services running on
devices (if supported) or via more lightweight approaches such as REST.

» Many of the services that will interact with the devices are expected to be network
services available, for example, in the cloud.

» The main motivation for enterprise services is to take advantage of the cloud
characteristics such as virtualization, scalability, multi-tenancy, performance, lifecycle

» management, etc.

» A key motivator is the minimization of communication overhead with multiple endpoints
by, for example, transmission of data to a single or limited number of points in the
network, and letting the cloud do the load balancing and further mediation of
communication.

» Content Delivery Network (CDN) can be used in order to get access to the generated data
from locations that are far away from the M2M infrastructure (geographically, network-
wise, etc.).

» To this end, the data acquired by the device can be offered without overconsumption

» of the device’s resources, while in parallel, better control and management can be
applied.

4.4.3 Distributed business processes in 10T

26

>

>

>

IV Unit — M2M and IoT Technology Fundamentals

In Figure 5.9, the integration of devices in business processes merely implies the
acquisition of data from the device layer, its transportation to the backend systems, its
assessment, and once a decision is made, potentially the control (management) of the
device, which adjusts its behavior.

In future, due to the large scale of 10T, as well as the huge data that it will generate, such
approaches are not viable.

Enterprise systems trying to process such a high rate of non- or minor-relevancy data will
be overloaded.

Traditional Business processes Distributed Business processes

[

& N6 w_,u

FIGURE 5.9

Distributed Business Processes in M2M era.

The first step is to minimize communication with enterprise systems to only what is
relevant for business. With the increase

in resources (e.g. computational capabilities) in the network, and especially on the
devices themselves (more memory, multi-core CPUs, etc.), it makes sense not to host the
intelligence and the computation required for it only on the enterprise side, but actually
distribute it on the network, and even on the edge nodes (i.e. the devices themselves), as
depicted on the right side of Figure 5.9.

27

>

IV Unit — M2M and IoT Technology Fundamentals

Partially outsourcing functionality traditionally residing in backend systems to the
network itself and the edge nodes means we can realize distributed business processes
whose sub-processes may execute outside the enterprise system.

As devices are capable of computing, they can either realize the task of processing and
evaluating business relevant information they generate by themselves or in clusters.
Business processes can bind during execution of dynamic resources that they discover
locally, and integrate them to better achieve their goals.

4.4.4 Considerations

>

>

Existing tools and approaches need to be extended to the make the business processes 10T
aware.

Distributed execution of processes exists (e.g. in BPMN), additional work is needed to be
able to select the devices in which such processes execute and consider their
characteristics or dynamic resources, etc.

The dynamic aspect is of key importance in the 10T, as this is mobile and availability is
not guaranteed, which means that availability in modeling time does not guarantee
availability at runtime and vice-versa.

Scalability is an aspect that needs to be considered in the business process modeling and
execution.

In addition, event-based interactions among the processes play a key role in 10T, as a
business process flow may be influenced by an event, or as its result, trigger a new event.

4.4.5 Conclusions

Modern enterprises operate on a global scale and depend on complex business processes.

Efficient information acquisition, evaluation, and interaction with the real world are of
key importance.

The infrastructure envisioned is a heterogeneous one, where millions of devices are
interconnected, ready to receive instructions and create event notifications, and where the
most advanced ones depict self-behavior (e.g. self-management, self-healing,
selfoptimization, etc.) and collaborate.

Business logic can now be intelligently distributed to several layers such as the network,
or even the device layer, creating new opportunities, but also challenges that need to be
assessed.

Future Enterprise systems will be in position to better integrate state and events of the
physical world in a timely manner, and hence to lead to more diverse, highly dynamic,
and efficient business applications.

28

IV Unit — M2M and IoT Technology Fundamentals

4.5 Everything as a service (XaaS)

» Cloud computing is a model for enabling ubiquitous, on-demand network access to a
shared pool of configurable computing resources (e.g. networks, servers, storage,
applications, and services) that can be provisioned, configured, and made available with
minimal management effort or service provider interaction.

> All applications need access to three things: compute, storage, and data processing
capacities.

» With cloud computing, a fourth element is added _ distribution services _ i.e. the manner
in which the data and computational capacity are linked together and coordinated.

’ . f‘.".
, e
« J
; Data
/ Computation | Storage Brocoeg Application ﬁ
N— ' / Access
d APls Distribution Seryices 4
4 N —) End Users
> / A
/ 7 D Ppﬁbabbn
~ > GVGfopmen{ : ‘)
R

Developers

FIGURE 5.11

Conceptual Overview of Cloud Computing.

Characteristics of cloud computing

» On-Demand Self-Service.
A consumer can unilaterally provision computing capabilities, such as server time
and network storage, as needed, or automatically, without requiring human
interaction with each service provider.

» Broad Network Access.
Capabilities are available over the network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g.
mobile phones, tablets, laptops, and workstations).

» Resource Pooling.
The provider’s computing resources are pooled to serve multiple consumers using
a multi-tenant model, with different physical and virtual resources dynamically

29

IV Unit — M2M and IoT Technology Fundamentals

assigned and reassigned according to consumer demand. Examples of resources

include storage, processing, memory, and network bandwidth.

> Rapid Elasticity.

Capabilities can be elastically provisioned and released, in some cases

automatically, to scale rapidly outward and inward commensurate with demand.

» Measured Service.

v" Cloud systems automatically control and optimize resource use by leveraging a
metering capability, at some level of abstraction, appropriate to the type of
service (e.g. storage, processing, bandwidth, and active user accounts).

v Resource usage can be monitored, controlled, and reported, providing
transparency for both the provider and consumer of the utilized service.

For M2M and 10T, these infrastructures provide the following:
1. Storage of the massive amounts of data that sensors, tags, and other “things” will produce.
2. Computational capacity in order to analyze data rapidly and cheaply.

3. Over time, cloud infrastructure will allow enterprises and developers to share datasets,
allowing for rapid creation of information value chains.

30

loT Physical Deviceg

7.1 What is an loT Device
Uhine” in Internet of Things (IoT) can be any object that by, auy,
bt ' Lyt o # , il
data (including user data) over a network (e . i
! 1epa y S Sy
phone. smart TV, computer, refrigerator, car, etc.). !01 (ICVWC(;. are C(’nne,Lth to the Inter,
and send information about themselves or about their SUI'I'(.)UH ings (e.g. information, -
r a network (to other devices or servers/storage) o, ..
around them remotely. Some SXamp;,,,i’ ,

Axs described carhier, a
identifier and which can send/receive

by the connected sensors) ove
actuation upon the physical entities/environment
laT devices are listed below:
e A home automation device that allows remotely monitoring the status of appliy;, .
and controlling the appliances.
e An industrial machine which sends information abouts its operation and heal;
monitoring data to a server.
e A car which sends information about its location to a cloud-based service.
e A wireless-enabled wearable device that measures data about a person such as
number of steps walked and sends the data to a cloud-based service.

7.1.1 Basic building blocks of an loT Device

An loT device can consist of a number of modules based on functional attributes, such a

e Sensing: Sensors can be either on-board the IoT device or attached to the device. -

device can collect various types of information from the on-board or attached sens:

such as temperature, humidity, light intensity, etc. The sensed information caz
communicated either to other devices or cloud-based servers/storage.

e Actuation: JoT devices can have various types of actuators attached that allow tae:
actions upon the physical entities in the vicinity of the device. For example. 2=
switch connected to an 10T device can turn an appliance on/off based on the comma™
sent to the device,

¢ Communication: Communication modules are responsible for sending collected ¥
1o other devices or cloud-based servers/storage and receiving data from othet devies
and commands from remote applications.

. /‘umiysn{x & Processing: Analysis and processing modules are respousiblc‘ for maki
sense of the collected data,

ly U
e 0!

i

. :ml;ur:;(h,b-m.mwc 0T device used for the examples in this book is the wide

J - V. b o B (1 o N
sing (la oar yn{un‘l wm‘pulu L_ullcd Raspberry pi (explained in later sections). The W
Raspberry Pi is intentional since these devices are widely accessible. inex Sensive: &
available from multiple vendors, Fur dely accessible, Inext /

» ndors. Furthermore, extensive i formation is available on %

programming and use both on the Interpet and i; tl R dV‘l ‘ we ted o
‘ L 1 other textbooks, The principles W

oo e @gm‘ |
Bahga & Madisetth & ‘

ary Device: Raspberry Pi 17

7 Exempl

&
are just as applicable to other (including propri
just : g proprictary) lo'T endpoints, i iti
: g points, in addition to
Bqurzwcl look at the specifics of Raspherry Pi, let us first look at the building
eric single-board computer (SBC) based 10T device |

(his book &€
RuspherTy Pi.
plocks of a &¢N
Figure 7.1 SI.‘OWS ;‘ gc:mm block diagram of a single-board computer (SBC) based
“ Y- Y 1 e N P i ' } y
joT device that includes CPU, GPU, RAM, storage and various types of interfaces and

pmphcmls.
T ctiv" e — ' . |
Connectivity Processor Graphlcs " Audiopvideo
USB Host : sl R
i GPU HOMI

3.5mmaudio

RJ4S/Ethernet

Interfaces

UART NAND/NOR
SPI DDR1/DDR2/DDR3

12C

CAN

Figure 7.1: Block diagram of an IoT Device

2 Exemplary Device: Raspberry Pi

aspberry Pi [104] is a low-cost mini-computer with the physical size of a credit card.
aspberry Pi runs various flavors of Linux and can perform almost all tasks that a normal
esktop computer can do. In addition to this, Raspberry Pi also allows interfacing sensors
nd actuatorg through the general purpose 1/0 pins. Since Raspbeiry Pi runs Linux operating
¥stem, it supports Python "out of the box".

Intern o
et of Things - A Hands-On Approach

o1 Physical Devicas, g ;

LS BT
" ;’(nr‘:

.
10
rul

73 About the Board

egre T2 shows (he Raspberny Py board with the various components/periphery). ful
AR EN « a L ok v LS

b

o Processor & RAM : Raspbetry Piis based onan ARM processor. The fates g, o
Raspberry Pi (Model B, Revision 2) comes with 700 MH7z Low Power ARM | [‘/(,,,/:;"
DPIOCCSSOr and S12MB SDRAM.

e USB Ports : Raspberry Picomes with two USB 2.0 ports, The USB ports on Katsphe
Pi can provide a current upto 100mA. For connecting devices that draw curreg ,,,,,,i
than 100mA, an external USB powered hub is required. '

o Ethernet Ports : Raspberry Pi comes with a standard RJ45 Ethernet port. Yoy .,
connect an Ethernet cable or a USB Wifi adapter to provide Internet connectivity,

¢ HDMI Qutput : The HDMI port on Raspberry Pi provides both video and auq,
output. You can connect the Raspberry Pi to a monitor using an HDMI cable. f4
monitors that have a DVI port but no HDMI port, you can use an HDMI o [V
adapter/cable.

« Composite Video Output : Raspberry Pi comes with a composite video output wit:
an RCA jack that supports both PAL and NTSC video output. The RCA jack can b
used to connect old televisions that have an RCA input only.

¢ Audio Output : Raspberry Pi has a 3.5mm audio output jack. This audio jack is s
for providing audio output to old televisions along with the RCA jack for video. The
audio quality from this jack is inferior to the HDMI output.

e GPIO Pins : Raspberry Pi comes with a number of general purpose input/ouput pi-
Figure 7.3 shows the Raspberry Pi GPIO headers. There are four types of pins 7
Raspberry Pi - true GPIO pins, 12C interface pins, SPI interface pins and serial R ant
Tx pins.

e Display Serial Interface (DSI) : The DS interface can be used to connect an LCD
panel to Raspberry Pi.

o Camera Serial Interface (CSI) : The CSI interface can be used to connect a ¢27<
module to Raspberry Pi.

e Status LEDs : Raspberry Pi has five status LEDs. Table 7.1 lists Raspberry P1 5%
LLEDs and their functions.)

¢ SD Card Slot : Raspberry Pi does not have a built in operating system and s
You can plug-in an SD card loaded with a Linux image to the SD card slot. Appcndl,t"f:

provides instructions on setting up New Out-of-the-Box Software (NOOBS) %
Raspberry Pi. You will require atleast an 8GB SD card for setting up NOOBS.

o Power Input : Raspberry Pi has a micro-USB connector for power input.

Bahga & Madisetti. © 7

7 4 Linux on Raspberry P

181

o o

e LED = }‘ chﬂm R
PWR 3.3V Power is present !
FDX Full duplex LAN connecte
LNK Link/Network activity

‘ 00 s _100 Mbit LAN connected

Table 7.1: Raspberry Pi Status LEDs

‘i RCA Video
GPIO Headers I Audio Jack

I Status LEDs

DSI Connector

Display
+——— USB 2.0
SD Card
Slot
, ————— FEth t
Micro USB i theme
—_—
Power
I CSI Connector
HOMI

Camera ?

Figure 7.2: Raspberry Pi board

74 Linux on Raspberry Pi

Raspberr y Pisu ious flavors of Linux including:
supports various Havor: . R C Thic
* Rasphian Raspbian Linux is a Debian Wheezy port opt‘lmlzed fo'r Ras‘pbcrr y P‘ This
is the recommended Linux for Raspberry Pi. Appendix-1 provides instructions on
Setting up Raspbian on Raspberry P ’ e g
* Arch: Arch is an Arch Linux port for AM]’).de-Vlcib:‘l - Raspberry Pi
* Pidora : Pidora Linux is a Fedora Linux optimizec O RAsphert: :
* RaspBM(C - RaspBMC is an XBMC media-center distribution t.or RdSPbC.rfY ‘gl.t'on
¢ OPEHELEé . dpenELEC is a fast and user-friendly XB.M(, media-center distribution.
* RISC 0§ - R.ISC OS is a very fast and compact operating system.

"eMet of Things - A Hands.On Approach

e A

i — o7 Physica Devices&

T —

T ——,—, | - Ene
——

=

g/

s T

GRIO 2 (12¢ 504)

GPI0 3 (120 SDL)

© 0

O
: o o GROUNG !
| GPIO a o DO oo 14 (Ung Yo | ;
: GRouND | @) L o NI 15 (UART pypy |
| w0 1 Q © | GPIo 13 K
| PO 1Q © | srouns ‘
| GPIO 22 ° o GPIO 23 f
V3O O crion {
GPIO 10 (spio Mos)) | @ © | Groung 5
GPIO 9 (SPIO MISQ) O O crioss ,
GPIO 11 (SPIO SCLK) O O sroseseioc N) !
© 0

GROUND GPIO 7 (SPIO CEy N) !

Figure 7.4: Rasbian Linux desktop

S o — s
& (ol
. I s
e

b

Ge il e zew
crvsEaT Iy ~ § c3T [ehc/?relsces”
7 -

FREIT _SE st ey Lon GRS [LiTEX ety
P

2 S lwwa. zagpsien g/ .
[/ wwa . 222z L2 ,'_til.’cq_:;z?:_—::u"
vy /fwwd . reEyo LT CZF fPesgoianZigs
= $COAPIES T weecyl”

S em” L DL e
> Jm e s g [fwan T RS TG .
"»""//V,'.,,’/./‘;- :;;//wavm;w,',:;/u;gz:r:/
,'7/.]?_7’1/:,f,»'st:‘;//yﬁn.m,a:."—:f,/

3 C BELET YT o~ ‘

T TSRS TN TRRRREmwm—Sn—

¢ on Raspberry Pi

Figure 7.6: Consol

Y aba §

Daentsnids b Bgtgharys B
if % 'a | VoS e il ey

i Quficle Kemed Dinwidn gy Buy Codacs

Downioads

@1, Pty o

Forum FAGS ppg |

New Qut Of Box Boftware

mecommenﬂed)
W e o *5d thgt firgt e By emrs Sart by drcasde ey 3 ..-1",55»‘.»7
‘ i New Cut of Bow S o pencs OGRS} et 3 B o 8rgec U card o
RS vz bt

thag prpen e Y with g chone e of
49 faapban Dufacy and twy

o erating Sy erns 4o ot ot
flavours of i

L Oree yous hapva
" te the MGOMS

ot mlim e

8 Arerating tyet e you
olding doum thih e be

oo ot T ariace by
#HOWE yors 80 suwateh 1o 3 A arars

A oveterie & ¢ areye tod card wthy 5 frash wetah ot the
Tt aoa

0f thieq
WEEIND et o

IBS wil outondt over HOM a your dnplay's praferred
P : RIS N even # ne daplay 15 connected, o YOu 40 nett sen gy,
! SEDR On yorwr MO oy g the cormpasne g, prasg],
2 3974 an v HOM preferrad moda, HOM sfe
g . o g

. .mw“wwm“w,-,.wk”

solay o are us
sur beybaard tg setect

Figure 7.7 Browser on Raspberry Pj

nd Piles s

Change Uger Password

20 kg 7 E the 70 zavi o ‘

‘ ! 7 Change passyord for the defayit u ;
» Enable Boot +o Dﬁaktvop/Zcr«:,tchx,‘;‘:boow@uheb‘n’er to boot into s des :
| -€rnationalisation OpLions = gar Up lanquage and regicnal satt i
% Ereble Camers A , 'Enable*thia Pi to work with the R
€ 2dd to Reastrach / Add this pj Lo the online Faspoer ‘ H
I vercliock ’ Configure Sverclocking fop your P s
8 Advenced Optiong b7 Configure adyenced pars ings
2 Pohaout Faspi-config Informat {on about’ thig configurat ¢

i < £Bsinect s <Fintah»

{

! ;

Figure 7.%- Raspberry pi configuration tool

-

,)) - toure 7. i,

pbian Linux desktop on Raspberry Pi. F”’uon Rasf
ron Raspbian, Figure 7.6 shows the default console v

Figure 7.7 shows the defaul browse

: asp"”
ron Raspbian. To configure Raspberry Pi, thﬁa; Sh""g:“
ool is used which can pe launched from command line as ($raSPi'Conﬁ~g; SD¢ nﬁ
Figure 7., Using the Configuration 1oo) you can expand root partition to il Jit. ©
keyboard layout

ol
ry P
 Change Password, set locale and timezone, change memo

Figure 7.4 shows the Ras
the defauly file explore

R 1N

-4 LiuX

i disable SSH server and
:::;z:~-$\'$u om so that you can uge the o

E:’:‘:c oh Raspberry Py comes wy
\n*\ a VNC ¢
for i\“\“{\“‘r’\ Pr and You can use
\?‘F“““ - provides instmotinn‘
mstruchions 0 connect to R.
commands on Raspberry Py,

on Rasy berry P;

change boo be
Sntire Space

th an HDM
connection op SSH. This

Ra.\‘pberr}.' Pi

temet of Thmgs -A HandS'on ApproaCh

havi or.

on the Sp) card.

S away w ith the

Setting yp VNC -
aspberry pj w ith e 7

SSH. Tabje

It s CCOMme

t Y
18 More COnvenient to

need for 3 se

from your desktop or |

T on R‘\\phcm Pi
7.2 lists the

Qmmmmifmmﬁui,m t&mmme ——
od Change Chmtor\ T ed /hmnt‘/px e N |
cat Show file contents cat file.xg
Is List files and folders Is /home/pi
locate Search for a file locate file.txt
lsush List USB devices lsusb
pwd Print name of present working | pwd
directory
mkdir - Make directory - mkdir /home/pi/new
/ . sourceFile.txt destinationFile.txt
myv Move (rename) file ~ mv sourceFile.txt destinationFi
' ile.txt
m Remove file mm file
" sudo reboot
reboor Reboot device o
- - sudo shutdown -h now
shutdown ~ Shutdown device |
. arep -1 “pi”’ /home/
grep Print lines matching a pattern 8
daf Report file system disk space 4¢ Th
usage | sfeonfie
: S ~ifconfig
iconfig Configure a network mteﬁac'e
Print network connections. i pegstat -Intp
netsyy . <tat1Stics |
o routing tables, interface statist | tar -xzf foo.tar.gz
L] acrt/ere: P hive : “ 1le.tar gz
ar Extract/create arc network | oot hup;//cxamble.t,nm/tllc..t g
Weet Non-interactive | WE R —
o
\\~~d0wﬂlqd der o ' used commands
R mxnyﬂinmumwu“
Table 7.2: Ras
h\—/’/

access the
parate display
Pop computer
and the
trtquemly used

- P ————

)

loT Physical Devices & g,

186 e e el i e eer e et -

7.5 Raspberry Pi Interfaces
Raspberry Pi has serial, SP1and 12C interfaces for data transfer as shown in Figure ’

7.5.1 Serial

Al interface on Raspberry Pi has receive (Rx) and transmit (I'x) pins for commumcm '
& s < Jl

['he sen
with serial peripherals.

7.5.2 SPI
Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicyg,,
with one or more peripheral devices. In an SPI connection, there is one master device 4
one or more peripheral devices. There are five pins on Raspberry Pi for SPI interface:

e MISO (Master In Slave Out) : Master line for sending data to the peripherals.
MOSI (Master Out Slave In) : Slave line for sending data to the master.
SCK (Serial Clock) : Clock generated by master to synchronize data transmission
CEO0 (Chip Enable 0) : To enable or disable devices.
CEQ (Chip Enable 1) : To enable or disable devices.

753 I12C

The 12C interface pins on Raspberry Pi allow you to connect hardware modules. I2C interface
allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line!

7.6 Programming Raspberry Pi with Python

In this section you will learn how to get started with developing Python programs o
Raspberry Pi. Raspberry Pi runs Linux and supports Python out of the box Ther:fore. you
can run any Python program that runs on a normal computer. However -it is the Ot‘n‘.f“l
purpose lq;)uU()utput capability provided by the GPIO pins on Raspbe , Pi that n:ﬂ\'c’* .
useful device for Internet of Things. You can interface e :
with Raspberry Pi using the GPIO pins and the SPI, 12
sensors connected to Raspberry Pi can be pl‘()cess’ed
mstance, sending data (o a server, sending

AR

a wide variety of sensor and actual"
C and serial interfaces. Input from (¥
and various actions can be taken. '
an email, triggering a relay switch.

7.6.1 Controlling LED with Raspberry Pj

et us start with a basic :
: MCexample of controll Dt i
g an LED from Ras Pi. Fi how”
A aspberry Pi. Figure 7.9 §

the schematic diagram of i
4) Of connecting ¢ {
g an LED (o Raspberr Pi \Y i
spoerry Pi. Box 7.1 shows how t0 t”

Bahga & Madisetti, © 20"

ogramming,ﬁa§pberry Pi with Pyth()n
progfaT= o
162~

 aoff from C(Tnmmnd line. In thig example the | pypy |

onnect the l‘,lzl) o any ntherx(}hl() Pin ag wel| N

el) hows a Python pmgrf\m for blinking an I,Ifi‘}
e gram Uses the RPi. GPIO module '

0 C”"“"C‘(‘(' {
\) to ¢ . O v b
'lht’lm : . control the ¢i1p ¥ P ever
soond: s 8 directio e GiPyoy , “TEy
N L Ve st pin 18 direction to output and then wyjye Truelfia on Raspherry pj 1,
Ky Al] N ,(' "’i ‘1 #)
'fwn{onCSCLO“d' "““"4”V”v‘ﬂwrﬁ

H a8 phr "

(PISFLAY) % 9 # 3
o ' b4 _tesen |
b LT
- X i oy £
SAASTERARE LT .4 - bedes ‘:
: ":’ L fseer 00
e p 38ece B54
R
a4 & LI T T
......... ...) ‘.‘.. -
(R L (XXX Y
(R TR TR D
venl & asees L
LA XX
.o tdeede ssees
& é P R T R
ce| *e0ee ssese 1,
ce| *CC0E cecee i,
col ¢€0ee ccese (.,
Coses dnscn
MPTEE R R
::‘ TR EEE RN Y
€ ¢ TR TR R P
.“' 'E X K XX B ‘.
KX R} se s .
$0 seeees teses
i TR XL SRR ER S 'Y
¢ ¢ ssscs e
(4! eeest 4
LA XX R 'y
(R A0 soeanse .
Cr&': g;....‘
1 #

with Raspberry Pi

e

Figure 7.9: Controlling LED

pi console
*817.1: Switching LED on/off from Raspber’y

rh ‘g - /f»/.L/’.,.!,u.';.‘f;/qu(’/(’Kf’(—”"'

2 EVEY /‘HJJ ’//'Jf’j"o] g

EITIRY
N o1a s)
' Qirection Lo (1t

-~ direction

BT
e L on

L :]dluf-:

hings . o Hands-On Approach

7.6.2 Interfacing an LED and Switch with Raspberry Pj

Now let us look at a more detailed example involving an LED and a switch that is used 0 |
control the LED.

Figure 7.10 shows the schematic diagram of connecting an LED and switch to Raspber
Pi. Box 7.3 shows a Python program for cont

rolling an LED with a switch. In this exanp
the LED is connected to GPIO pin 18 and switch is connected to pin 25. In the infinite Wh‘l;
loop the value of pin 25 is checked and the state of LED is toggled if the switch is pres<®

 Box 7.3: Python program for controlling an LED with a switch
from time import s)
import RPi.GPIO ags ¢

GPIO.setmode(GPlc_ECM)

 _~¢ 2

Bahaa & Madisetti. © ~

m‘ng RaSpbe"y Pi Wﬂh Python

SESEETTT

ING~0RP 1A

Semsem Sees

§ ‘ th Ri
Figure 7.10: Interfacing 1ED and switch Wi

o Th‘ngs
A Hands-On Approa

N
™

A0

W Iy TR BRFLVIVE S & E
nd

[Box 7.4: Python prograin for sending an emall on swilch pross

(o pecoipient-email>’]

rewitch pressed on Raspberry Pif

e A
eI name ' <« Gmail-username>’
sword ' <password>’
1 rsmtp.gmail.com: 5877

cmtmeres (CPTIO . BC
66 e (GPIO0O.BCM)

sPIC.IN)

¢ sendemail (from_addr, to_addr_list, cc_addr_list,

4
subject, message,
login, password,

hesder = ‘From: %s \n’ % from_addr
header += “To: %8 \n’ % /7,7 .join (to_addr_list)
neader += \n’” % ’,’.join(cc_addr_list)
header += /Subject: %8 \n \n’ % subject

message = header + message

I (v 2
DR S

server = smtplib.SMTP (smtpserver)

server . starttls ()

cerver, login(login, password)

proplems = server.sendmail (from_addr, to_addr_list, message)

GEY VT ,quji (}

while True:
LIV
if (GP1O, i]t[l‘ll {(2%) True) :
sendemail (from email, recelpients_list,

y

o list, puliject, message,
userhame, password, server)
sleep{.01)

I R : | - - o - e s e ~ . - 2015
Bahga & Madisett! ©

|

& LWL PythOn
progdi<! ,/3——\\
76 T >

KeybcardInterrupt ,
524::‘\’;:;? ()
interfacing a Light Sensor (LDR) With Raspberry Pj
76.3 have learned how to interface LED 4
- - vou A
§0 far .\O

nd switch With Rag i
: , . ‘pberry Pi. Now let ug
.xample of interfacing a Light Dependent Resistor (LDR) Wwith Raspberry Pi and
okatan ch;D on/off based on the light-leve] sensed,
qming an 7.11 shows the schematic dig
Fxgurcf ‘[;DR to 3.3V and other side to g |
ye side of L4

nple). An LED is connected tg pj

ased on the light-leve]
gﬁ&‘f&i.

un I ller is the LDR
rtional to the light level as greater the amount of light, sma

Bl Nt 15 fOpo . capacitor.

" ; e ancli) greater is the time taken to charge the p

resistanc g

i ED/

-mport RP1.GPIO as GPIO

-Tpert time

*?I0.setmode (GPIO.BCM)
'.:":g:hreshold = 1000
DR PIN = 18

Tre

“CHT_PIN = 25
* TeadLDR (PTN) -

tup (LIGHT_PIN, GPIO.OUT)
¥+Cutput (PIN, False)
“-Sleep(0.1)

.setuiiPIN, GPIO.IN) 1se) :
¥hile (GPI0. input (PIN)==Fa
reading=reading*f'l
fetury reading

M—”/

"0l Things - A Hands-On Approach

o U0

e
v o v W
B ” - "
s -,
s R o
'3
sk]
TR o APt ¢ i
i il ¥
[k g
i 1) 1
¥ i
1
(3 ¢ I
M §0 4
1 . ¥
2
i r
N 4
t
Ty
§ ve g
- ;) PSR 2 I
. {]« 1Y itre JL5A .
. oy T Y
- 3 T T }
% Lizitat v)
s T~ T T AT
P + (13
i i 41 (L0l D Liv)
- < Fa ¥ {7\
. P el el T R S }

PIT ISPLAY)

FIRAENIERUF S 4 .- : ::
{ @
: .: R
P LN BN
' § ..; * a9 R
i ¢ e @ §
] *® @
» — s Fa . %
el toae L] je o
es ®*ossel @ b A |
.l cevew = « jew
! [EEXE o 5oy
e Teaes 408 av
* el seawe 2w H
fe ol * v eaa aeat® af ;
lagl *scae wRaed Ged :
SRR Lk 5 * ‘? : : : : : : :: 3‘.? '
' sal ®eses » b é“z ‘
R 35 ®e LR * bl by :
e ceraas . e jad :
EoncunEe se/ Seese ejpes ef
P tseae L & g
csave cephav 8 i :
csane S € G0
ﬂ s5ee ifees L
"N e 48 Je9
s ses e ees 3¢
ss] *eves eeess et
| esesve sesas
i 4 4
o SR _“>;~‘-~'ﬁ‘—A“____—-/—/ B

Flgure 7 11- o
I Iertacing LDR with Raspberry pi

T — T
-\\-\ —,/ v:\”

. 40
L. . . o nnan'l;‘.em'\'

d message transfer capability independent

1t laver protocols provid £ |
;h t;g il:lsdi(;lyin}g’ neﬁwork. The message transfer capability can be set up on conln‘lectlons,
thout handshakes/acknowledgements (as 1n UDP),

either using handshakes (as in TCP) or Wi ; |
The transport layer provides functions such as error control, segmentation, flow control and

congestion control,
o TCP : Transmission Control Protocol (TCP) is the most widely used transport layer

protocol, that is used by web browsers (along with HTTP, HTTPS application layer
protogols), email programs (SMTP application layer protocol) and file transfer (FTP).
TCP is a connection oriented and stateful protocol. While IP protocol deals with
send'mg packets, TCI'J ensures reliable transmission of packets in-order, TCP also
provides error detection capability so that duplicate packets can be discarded and
lost packets are retransmitted, The flow control il :

ntrol capability of TCP ensures that

Transport Layer
e end-to-en

Bahga & Madisetti, ©) 2015

rate at which the sender sends the data is not too hi
The congestion control capability of TCPp helps in o
congestion collapse which can lead to degrad
Jescribed in RFC 793 [9].

upP : Unlike TCP, which requires carrying out an initial se

connectionless protocol. UDP is useful for time~scn'~;iti\;e "“‘":‘p\t'f(n,etlnm UDPis a
(mall data units to exchange and do not want the ()Vérh("';l(l([,)r 't(,mmm’; that have very
i« a transaction oriented and stateless protocol. UDP :l()cs :(()tnncm,(m setup. UDP
Jelivery. ordering of messages and duplicate elimination [\li }:eplﬂ'wull,c guaranteed
can ensure reliable delivery or ensuring connections cré't %l ,r.we.? o pm’tgu;lﬁ
gdescribed in RFC 768 [10]. s created are reliable. UDP is

‘h for the receiver to process
avoidi : d
" .mlmg network congestion and
ation of network performance, TCP is

application Layer

Application layer protocols define how the applications interface with the lower layer
protocols send thg d'ata over the network. The application data, typically in files, is
encoded by_ the apphcat%on layer protocol and encapsulated in the transport layer protocol
which provides connection or transaction oriented communication over the network. Port
aumbers are used for application addressing (for example port 80 for HTTP, port 22 for SSH,
etc.). Application layer protocols enable process-to-process connections using ports.

« HTTP : Hypertext Transfer Protocol (HTTP) is the application layer protocol that
forms the foundation of the World Wide Web (WWW). HTTP includes commands
such as GET, PUT, POST, DELETE, HEAD, TRACE, OPTIONS, etc. The protocol
follows a request-response model where a client sends requests to a server using the
HTTP commands. HTTP is a stateless protocol and each HTTP request is independent
of the other requeéts. An HTTP client can be a browser or an application running
on the client (e.g., an application running on an IoT device, a mobile application or
other software). HTTP protocol uses Universal Resource Identifiers (URIs) to identify
HTTP resources. HTTP is described in RFC 2616 [11].

o CoAP : Constrained Application Protocol (CoAP) is an application layer protocol f‘or
machine-to-machine (M2M) applications, meant for constrained environments w1‘th
constrained devices and constrained networks. Like HTTP, CoAPis a wel? transter‘
protocol and uses a request-response model, however it runs on top Qf UDP‘mStead Of
TCP. CoAP uses a client-server architecture where clients communicate with servers

using connectionless datagrams. CoAP is designed to easily intergéi g":‘t]lal Iézlllz
Like HTTP, CoAP supports methods s and '

uch as GET, PUT, POST, i
draft specifications are available on IEl ts (CO &

AT Constrained environmen
Group website [12].
. -

| :
ntemet of Things - A Hands-On Approach

allows full-duplex communication over a single
wes between client and server. WebSocket 18

e WebSocket @ WebSocket protocol
ages 1o be sent back and forth between the

‘ or sending AR
cocket connection for s nding nu .
‘ and allows streams of mess ‘ b | iween e
keeping the TCP connection open. The client can be a browser.

based on e
an 10T device. WebSocket is described in RFC 6455 [13].

client and sernver w hile
. m‘fl:;!(: {’,‘:‘i’:‘g:‘ ‘Ch\x:‘nc Telemetry Transport (MQTT) is a light-weight yvje§sqglﬂg
) M:’L | ir‘ami m; the publish-subscribe model. MQTT uses a client-server architecture
\‘;'I:c:v ‘iflt“\;lft‘ll((such as an 10T device) connects to the server (also C{l”Cd M?'LT
Broker) and publishes messages to topics on the server. The brokctr torwards. t, ¢
messages to the clients subscribed to topics. MQTT is well suited for Consnzitned
environments where the devices have limited processing and memory resources
and the network bandwidth is low. MQTT specifications are available on IBM
developerWorks [14]. ~
e XMPP : Extensible Messaging and Presence Protocol (XMPP) is a protocol for
real-time communication and streaming XML data between network entities. _XN.IPP
powers wide range of applications including messaging, presence, data syndication,
gaming, multi-party chat and voice/video calls. XMPP allows sending small chunks
of XML data from one network entity to another in near real-time. XMPP s a
decentralized protocol and uses a client-server architecture. XMPP supports both

client-to-server and server-to-server communication paths. In the context of IoT,
XMPP allows real-time communication between IoT devices. XMPP is described in
RFC 6120 [15].
e DDS : Data Distribution Service (DDS) is a data-centric middleware standard for
device-to-device or machine-to-machine communication. DDS uses a publish-subscribe
model where publishers (e.g. devices that generate data) create topics to which
subscribers (e.g., devices that want to consume data) can subscribe. Publisher 1s an

* AMQP : Advanced Message ' ' '
over ey ped “g, Quelfmg Protocol (AMQP) is an open application
e usiness messaging, AMQP supports both point-to-point and
publ p ub;fghelr (J‘(l €r models, routing and queuing. AMQP brokers receive messages
f S N ICpe .y : 8) =
comestions . cf 1, devices o applications that generate data) and route them over
essigon 1 excm:sume}rj (applications that process data). Publishers publish the
1eshages anges which then distribu 'S ‘ |
o ‘ ! € message copies to S S

her delivereq by the broker (o the consumers w} é . que'ueb‘ S

Or the Consumers . “Hmers which have subscribed to the queue
S can pull (he messages from the queues. AM ificati .

. QP Specification is

Bahga & Madisetti. © 2015

i o R e A Y L D Ll LJ.

o CoAP : Constrained Application Protocol (CoAP) is an application layer protocol for
machine-to-machine (M2M) applications, meant for constrained environments with
constrained devices and constrained networks. Like HTTP, CoAP is a web transfer
protocol and uses a request-response model, however it runs on top of UDP instead of
TCP. CoAP uses a client-server architecture where clients communicate with SErvers
using connectionless datagrams. CoAP is designed to easily interface with HTTP.
Like HTTP, CoAP supports methods such as GET , PUT, POST, and DELETE. CoAP
draft specifications are available on IEFT Constrained environments (CoRE) Working

Group website [12].

NV
a iV viiv dpylldelUll Ul AdAil XU 1L UL VILUUL. VTYLUUUODULVIAUL 10 UVUDA AR A28 28 1 1)I.

MQTT : Message Queue Telemetry Transport (MQTT) is a light-weight messaging
protocol based on the publish-subscribe model. MQTT uses a client-server archltecture
where the client (such as an IoT device) connects to the server (also called MQTT
Broker) and publishes messages to topics on the server. The broker forwards the
messages to the clients subscribed to topics. MQTT is well suited for constrained
environments where the devices have limited processing and memory resources

and the network bandwidth is low. MQTT specifications are available on IBM
de\ eloperWorks [14].

Introduction

1.1 Welcome to the World of Embedded Processors
1.1.1 Where Are the Processors Used?

It you are new to microcontrollers or ARM® processors, first I would like to give you a
yery warm welcome.

Processors are used in majority of electronic products. For example, your mobile phones,
televisions, washing machines, cars, bank card (smartcards), and even simple devices like
the remote control for your radio can have processors inside. In most cases, these
processors are placed inside in chips called microcontrollers, In modern microcontrollers,
the chip also contains the essential elements like memory systems and interface hardware
(often called peripherals). There are many different types of microcontrollers; they can be
available with different processors, memory sizes, and peripherals inside, and can be
available in difterent packages (Figure 1.1).

Large numbers of microcontrollers are designed for general purpose, which means they
can be used in wide range of applications. Sometimes processors are used in chips that are

NXP LPC1114

(Cortex-Mo0) Freescale Kinetis KLO3
A

(Cortex-M0+)

NXP LPC1343
(Cortex-M3)

4 RoHS/No-PB &

Wilee s

L

yrreery

“ipsreersnind

s

o

" D

Microcontrollers are available in wide range of physical packages.

The Definitive Guide tv ARM” Cortex®-M0 and Cortex-M0+ Processors, httpe//dx.doi.org/ 10, 1016/BY78-0-12-803277-0.00001 -1
Copyright © 2015 Elsevier Inc. All rights reserved. 1

6 Chapter 1

Performance
functionality

ARM1
series

ARMSE
series

ARM7TDMI

2003

Cortax-A72
High-end

Application

ARM Cortes
p'()(}.lﬁn'!

Proceseors Cortax AS7
Cortex-AlT

Cortex A8 Cortex-A12

Cortex A2 Caortex A5}

Cottex-A8 Gortax-A7

Cortex-AS

h performance
Cortex-R7 Al g hiy

Real-time systams

Cortex-R5

Cortex-R4 oc Aox-M7
ortex-

oCoﬂex-'M

Microcontroller

o Cortex-M3
applications

O

Cortex-M1

o ocmox-mu
Cortex-M0
»
20056 2009 2012 Future

Figure 1.3

Overview of the ARM processor family.

In around 2003, ARM realized that it needs to diversify the processor products to address
different technical requirements in different markets. As a result, three product profiles are
defined. and the Cortex™ processor brand name is created for the naming of these new

Processors:

\Cortex-A processors—These are Application processors, which are designed to provide
high performance and include features to support advanced operation systems (e.g.,
Android, Linux, Windows, i0S). These processors typically have longer processor pipeline
and can run at relatively high clock frequency (e.g., over 1 GHz). In terms of features,
these processors have Memory Management Unit (MMU) to support virtual memory
addressing required by advanced OS, optional enhanced Java support, and a secure
program execution environment called TrustZone®. 3

~

¢
S

The Cortex-A processors are typically used in mobile phone, mot')jle computing devices

(¢.g., tablets), television, and some of the energy efficient servers.:

Whnle{ the Cortex-A processors have high performance, the processor is not designed to
provide rapid response time to hardware events (i.e., real-time requirements). As a result, a

Introduction 7

different profile of high-performance processors is needed, and they are the Cortex-R
processors.

[Cor(exd(processors—These are Real-Time, high performance processors that are very
good at data crunching, can run at fairly high clock speed (e.g., 500 MHz to 1 GHz range),
and at the same time can be very responsive to hardware events. They have cache
memories as well as Tightly Coupled Memories, which enable deterministic behavior for
interrupt handling. The Cortex-R processors are also designed with additional features to
enable much higher system reliability such as Error Correction Code (ECC) support for
memory systems and dual-core Tock-step feature (i.e., redundant core logic for error

detection). |

(, The Cortex-R processors can be found in hard disk drive controllers, wireless baseband
controllers/modem, specialized microcontrollers such as automotive and industrial
controllers. \

Whild the Cortex-R processors can be very good at high-performance microcontroller
applications, they are quite complex designs and can consume fair amount of power.)
Therefore, another group of processors are need for the very low-power embedded
products, and they are the Cortex-M processors.

[~Cortex-M Processors—The Cortex-M Processors are designed for main stream
microcontroller market where the processing requirement is less critical, but need to be
very low power. Most of the Cortex-M Processors are designed with a fairly short pipeline,
for example, two stage in the Cortex-M0+ processor and three stages in Cortex-MO,
Cortex-M3, and the Cortex-M4 Processors. The Cortex-M7 processor has a longer
pipeline (six stages) due to higher performance requirement, but still the pipeline is a lot
shorter than the designs of high-end application processors} As a result of the shorter
pipeline and low power optimizations in the design, the maximum clock frequencies for
these processors are slower than Cortex-R and Cortex-A processors, but this is rarely a
problem because even a 100 MHz Cortex-M-based microcontroller can do a lot of work.

Jfl‘ he Cortex-M processors are designed to provide very quick and deterministic interrupt
responses. To achieve this, the processor’s execution control part is closely coupled with a
built-in interrupt controller called Nested Vectored Interrupt Controller (NVIC). The NVIC
provides powerful and yet easy-to-use interrupt’s management. In general, the Cortex-M
processors are very easy to use, with almost everything can be programmed in C. |

Due to their low power, fairly high performance, and ease of use benefits, the Cortex-M
processors are selected by most major microcontroller vendors in their flagship
microcontroller productsfl"he Cortex-M processors are also used in some of the sensors,
wireless communication chipsets, mixed signal ASICs/ASSPs, and even used as controller
in some of the subsystems in complex application processors/SoC products. |

I
8 Chapter 1 7 i . .

)) bl SNOT ‘ ,l"‘lﬂ\ 4 l(»\l Jl\. O ha\)l\)CC\\(I!E %l,\EL’la"\ deSlg"fd
S & .
. ‘ B
‘ LRI & Al . \
l“ t“ld“l‘ n 1§ “IC (oW ex

se

istance features. Thes .
. . r-resistance fea :
iti fucts, which included tempe C000™ ., one of the SecurCore 18
for security-sensitive products, es. For example, the SCO00 ¢

’ SCNC!

® 2o 7
S g N)) < NVIC fOf
processors are the SecurCore MO processor (same instruction set, and uses !

‘ - anking/
designed based on the € nncK Core products can be found in SIM cards. banking
' ang ent). The Securli)
interrupt manageme

b b o 1D ¢ rds
yviment systems ﬂ“d CVEen some electronig a
pa) ¥ S

1.2.3 Blurring the Boundaries

i v : * of the microcontrollers
i ways, the term microcontroller can be a bit vague, Snmtf e e reone !
(D some avs, 7 ey : ” ‘
arc based on application processors such as ARMO926E]-S, $'nc | mm”;;r oo dstisy
‘\R\le processor family. In last few years, some of the mu.mc: e
. ' -A processc
' : ased on the ARM Cortex-A p
o produce microcontroller products based 81 Clofie K proctetof 4o b. Texss
(e.g.. Freescale Vybnd. Atimel SAMASD3). and AR C P
Instruments TMS570, Spansion Traveo Family).

S i i complex SoC
At the same time, the Cortex-M processors are also being used in many comp

devices as power management controller. /O subsystem controller, etc.

/8- itec . the
In the next generation of Cortex-R processor based on the ARMv8-R archneuxfre .
architecture definition also allows the processor to incorporate a MMU so that it can

used with a full feature OS like Linux or Android. and at the same time handle real-time
tasks based on a virtualization mechanism.

1.2.4 ARM Cortex-M Processor Series

There are a number of processors in the Cortex

-M processor family, as shown in Table 1.1.

(56 instructions). Most of these i
density—which means it need a
compared to many architecture.

The instruction set of the Cortex-M0 and Cortex

-MO+ processors are fairly simple. But if
ssing, then potenually

tion set. In those cases
e the Cortex-M3 proc
that supports the follo
More memory addressing modes

Larger immediate data in the 32-bit instructions

» 1t might be better to

use the
€SS0r supports a number of extry
wing:

P S ——

T RN R SO RN 0 NN AT RS RS

Introduction 9

Table 1.1: The Cortex®-M Processor family

Processor Descriptions

Cortex-M0 The smallest ARM®™ processor—only approximately 12000" logic gates at minimum
configuration. It is very low power and energy efficient,

The most energy efficient ARM processor—it has a similar size as the Cortex-M0
processor, but with additional system level and debug features (all optional), and have
higher energy efficiency than the Cortex-M0 processor design. It supports the same
instruction set as the Cortex-M0 processor.

It is a small processor design optimized for field programmable Gate Array (FPGA)
applications. It has the same instruction set and architecture as in the Cortex-M0
processor, but has FPGA specific memory system features.

When compared to the Cortex-M0 and Cortex-M0+ processors, the Cortex-M3 has a
much more powerful instruction set, and its memory system is designed to provide
higher processing throughput (e.g., use of Harvard bus architecture). It also has more
system level and debug features, but at a cost of larger silicon area (minimum gate
count is about 40000 gates) and slightly lower energy efficiency. In general, the energy
efficiency of the Cortex-M3 processor is still a lot better than many traditional 8-bit
and 16-bit microcontroller devices because the performance is substantially higher.
The Cortex-M3 processor is very popular in the 32-bit microcontroller market.

The Cortex-M4 processor contains all the features of the Cortex-M3 processor, but
with additional instructions to support DSP applications and have an option to
include a floating point unit (FPU). It has the same system level and debug features as
the Cortex-M3 processor.

It is a high performance processor designed to cover application spaces where the
existing Cortex-M3 and Cortex-M4 processors cannot reach. Its instruction set is a
superset of the Cortex-M4 processor, for example, supporting both single and double
precision floating point calculations. It also has many advanced features, which are
usually find in high-end processors such as caches and branch predictions.

Cortex-M0+

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-M7

“The exact gate count of a processor depends on many factors such as the semiconductor process library used, the chip

design tool used, the design optimization options, signal routing constraints, etc.

* Longer branch and conditional branch ranges

e Additional branch instructions

e Hardware divide instructions

e Multiply accumulate (MAC) instructions

¢ Bit field processing instructions

e Saturation adjustment instructions

As a result, the Cortex-M3 processor can handle complicate data processing quicker.
The code size might be similar to Cortex-MO0 or Cortex-M0+ processor because although
fewer number of instructions are required to perform the same operations, and these
powerful instructions are mostly 32 bit instead of 16 bit. These 32-bit instructions also
enable the Cortex-M3 processor to utilize the registers in the register bank better.

In some applications, however, you might need to perform some DSP operations such as
filtering, signal transformations (e.g., Fast Fourier Transform), etc. In these applications,

BT

10 Chapter 1 I
Cortex-M7 FPU |
frt N [EVTEE v |
ol " : ' (single and double
vem s ! IR TR P L o 04 AT Y VRN puﬂdoﬂ floating pd‘ﬂﬂ 1
Cortex-MAFPU ||
F single precision | |
AN cvie i sy Vioa [{ non {single p H
aw Noating point) Il
)
¥ o ¢ A ARt] Vs yNEG vhMiLA 1 i w,ﬁ VENMA b
{
{1
“ e o 0 - e verK e { MR bl L] VNS {1
i [uanve [unanpis || UMADDS } | 1 |
- v ANBiE YAODR SADDIE CADDA UADD & {) b v o3 j\
" » ATURTR Yo iR P} { qquen U e [vama | [msusis e | ‘ l
’ i
[swapmig | | dmanos sMIUNLS | ! i
ABH Ao a1 AR » wic - |8
| pep i 361 wsuas || &
i L | “r | tof [amex | (S) cme i}
' [smutrr | [smunts UOAODIE |
bt B e FoR wh) wm [oms 1oRD) - - : sl
’ - ’ [omuer [smures vosums |
LONA \owDe et L[ey | [omar © pmsm | [omse , o ~ ~
j ‘ j 7 y
! ! { smarr [swuatR UaADOS |
A 5 . p)
LoRss? LoRSHY [womex) woeexm || woRexM s J(e O e [swaane i)
fad mer | MRC can | MRRC || PO (Pt] {
s) A J Yo st [seurs smt
wov [wow wort 10 wmw [omew][ms 10 ma | - r {
' /A 4 Dol smuasT)f SMIALES |
NOP PUSH | Y } (1P < ¢ P
] or 1| om) omn | (Cmow [M on [useos
anc apo | aon | mxer| | e || mc [mev m} [nevie | L_ REVSH MJ (™ hom | L ey
1, - \ L= J— Mhindiod S I SRS R {
(oo ot

\ | . e N caayrpianan e IS

o asn) (o [om)|(we () (e U) vasan [vamsx
o = ue —— = L -

M ([sue ’] (_) varx { surx__:, () e)

MRS
o ow [wm J(Cem [me) (wov J v) o (s :
L ssax

owe tor tor || wom | |1ome] | wom || i sTRO I sn_u__J [’f_%@;"_’_j C :—s_rl_il—xt _:_] (___"EH.E_ C:_m:; 7
o e 1][0) (v (o) | (s) (smuoe) (o) ()) [|

Ghail - A Ul | LAY |
N iy | iy e G S 1 3 :
soc || STR | | STRH | | STRB) [STM JIELS; STRHT STRNY EE @ ([xams | | ‘
))) o] () (o) [) e) o J O) o) (e
wi) ComexMO/MON/ML |() Cml(® | Cem) (a0

BT T (ARMV6-M) e 7 1
16-bit 'PStf”Ft,'°f‘§,_ b 32-bit instructions Cortex-M3 (ARMv7-M) ! Cortex-Ma (ARMV7E-M)

Figure 1.4
Instruction set of the Cortex®-M processor family.

you might want to use the Cortex-M4 processor because the Cortex-M4 processor added
another group of instructions targeted for these applications—these included Single

Instruction Multiple Data (SIMD) operations and saturated arithmetic instructions. The
internal data path of the processor is also redesigned to enable single cycle MAC

operations.

The Cortex-M4 processor also has an optional floating point unit that support IEEE-754
single precision floating point calculations. It does not mean that you cannot perform
floating point processing in the Cortex-M0, Cortex-MO-, or other processors without the
floating point unit. If you are using these processors for floating point operations, the

Introduction 11

compiler will insert runtime library functions to handle the floatin

& point calculation using
sottware, which can take much longer to do

and need additional code size overhead.

For applications that demand very high data-processing requirements, or if double
precision floating point calculation is needed, then the Cortex-M7 processor might be the
best choice. 1t iy designed to provide very high dmu-processing performance, but use the
same programmer’s model and a superset of the instruction set as Cortex-M4 processor.
To decide which processor to use in a p

roject, you need to understand the processing
requirements of the applic

ation. Some general guideline is shown in Table 1.2,

Please note that you might also need to consider the differences of the system-level
features and performance when selecting the right Cortex-M processor. An overview of the
comparison is shown in Table 1.3 and a comparison of the performance is shown in

Table 1.4, Please note that the Cortex-M processors are very configurable and the exact
features can be customized by the chip designers and vary among different devices.

In general, the ARM Cortex-MO and Cortex-M0+ processors are both very suitable for
ultra-low power applications, and because the instruction set and programmer’s model are
relatively simple, and the architecture is very C-friendly, they are also very suitable for
beginners. For example, there is no need to learn a lot of tool chain-specific keywords or

data types to get the application to work on a Cortex-M microcontroller, unlike many 8-bit
or 16-bit architectures.

Table 1.2: The applications for various Cortex®-M Processors

—
Processor

Applications

Cortex-M0, Cortex-M0+
processors

General data processing and 1/0 control tasks.
Ultra low power applications.
Upgrade/replacement for 8-bit/16-bit microcontrollers.
Low-cost ASICs, ASSPs

Cortex-M1 Field Programmable Gate Array(FPGA) applications with small to

medium data processing complexity. (For high-complexity data
processing there are FPGAs with built-in Cortex-A processors such as

Xilinx Zynq-7000 and some of the Altera Arria V SoCs and Cyclone V
SoCs).

Cortex-M3 Feature-rich/high-performance/ low-power microcontrollers.

Light-weight DSP applications.

Cortex-M4 Feature-rich/high-performance/ low-power microcontrollers.

DSP applications.
Applications with frequent single precision floating point operations.

Cortex-M7 Feature-rich/very high performance power microcontrollers.

DSP applications.

Applications with frequent single or double precision floating point
operations.

12 Chapter 1

Table 1.3: An overview of the system level and debug features
for various Cortex®-M Processors

Features Cortex-M0 Cortex-MO+ Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M7

Number of 1-32 1-32 1,8,16, 32 1—240~ 1-240 1-240

interrupts

Interrupt 4 4 4 8—256 8256 8-256

priority levels

FPU - - Optional Optional (single
(single precision/single +
precision) double precision)

OS support Y Y Optional Y Y Y

Memory - Optional - Optional Optional Optional

Protection

unit

Cache - - - - - Optional

Debug Optional Optional Optional Optional Optional Yes

Instruction - Optional - Optional Optional Optional ETM

trace MTB ETM ETM

Other trace - - - Optional Optional Optional

Table 1.4: Performance of various Cortex®-M Processors with commonly used benchmarks

Features Cortex-M0 Cortex-M0+ Cortex-M3 Cortex-M4 Cortex-M7
Dhrystone 2.1 (per MHz) 0.9 0.95 1.25 1.25 2.14
CoreMark 1.0 (per MHz) 2.33 2.46 3.34 3.40 5.01

1.2.5 Quick Glance on the ARM Cortex-M0O and Cortex-MO+ Processor
The Cortex-MO and Cortex-M0+ Processors:

* Are 32-bit Reduced Instruction Set Computing (RISC) processor, based on an architec-
ture specification called ARMv6-M Architecture. The bus interface and internal data
paths are 32-bit width.

* Have 16 32-bit registers in the register bank (10 to r15). However, some of these regis-
ters have special purposes (e.g., R15 is the Program Counter, R14 is a register called
Link Register, and R13 is the Stack Pointer).

* The instruction set is a subset of the Thumb Instruction Set Architecture. Most of the
instructions are 16 bit to provide very high code density.

* Support up to 4 GB of address space. The address space is architecturally divided into a
number of regions.

¢ Based on Von Neumann bus architecture (although arguably the Cortex-MO0+ processor
have a hybrid bus architecture because of an optional separate bus interfzfce for fast
peripheral register accesses, see section 4.3.2 Single Cycle I/O Interface in Chapter 4).

Introduction 13

» Designed for low-power applications, including architectural support for sleep modes
and have various low power features at the design/implementation level,

* Includes an interrupt controller called NVIC. The NVIC provides very flexible and

powerful interrupt management.

The system bus interface is pipelined, based on a buy protocol called Advanced High-

performance Bus (AHB™) Lite. The bus interface supports transfers of 8-bit, 16-bit, and

32-bit data, and also allows wait states to be inserted. The Cortex-M0+ processor also

have an optional bus interface (Single Cycle /0 interface, sce section 4.3.2) for high-

speed peripheral registers, which is separated from the main system bus,

Support various features for the OS (Operating System) implementation such as a

system tick timer, shadowed stack pointer, and dedicated exceptions for OS operations,

Includes various debug features to enable software developers to create applications

cfficiently.

Designed to be very easy to use. Almost everything can be programmed in C and in

most cases no need for special C language extension for data types or interrupt handling
support.

Provide good performance in most general data processing and 1/O control applications.

The Cortex-M0 and Cortex-M0+ processors do not include any memory and have only
got one built-in timer which is primarily for OS operations. Therefore a chip designer
needs to add additional components in the chip design themselves.

1.2.6 From Cortex-MO Processor to Cortex-MO+ Processor

The ARM Cortex-MO0 processor was released in 2009. It was a ground-breaking product
because it is the first product that demonstrated it is possible to cramp a 32-bit processor
into the silicon footprint similar to an 8-bit or 16-bit processors, while still able to make

the design usable and provide excellent energy efficiency and a decent performance for a
32-bit processor.

Although the Cortex-MO processor is a lot smaller than the Cortex-M3 processor (which
was released in 2005), it maintains a number of key advantages as in Cortex-M3
processor:

» Flexible interrupt management using a built-in interrupt controller called NVIC

« OS support features including a timer hardware called SysTick (System Tick timer) and
exception types dedicated to OS operations

» High code density

» Low power support such as sleep modes

» Integrated debug support

« Easy to use (almost everything programmable in plain C language)

o Ee e &

i

Atl‘:l\f;?::;xo processo]r has been a very successful product, and was the fastest licensed

ARM bave or in 2009._ 'After the Cortex-MO processor is released, the designers in

desieners I‘?elved addlinonal feedback. from customers, microcontroller users and chip

Cortex-M’()an- ARM de01.ded that there is an opportunity for an enhanced version for the
processor, which was subsequently called the Cortex-MO-+ processor.

ghe Co.rt.ex-M0+ processor supports all the features available in the Cortex-MO processor,
ut additional features were added to make it more powerful (these are all configurable by

the chip designers):

* Unprivileged execution level and Memory Protection Unit (MPU)—this feature is
available in other ARM processors such as the Cortex-M3 processor. It allows an OS to
execute some of the application tasks with an unprivileged level so that the OS can
impose memory access restrictions. For example, the unprivileged software cannot
access critical system registers in the processors like NVIC registers, and memory
access permissions can be managed by the MPU. In this way, a system can be made
more robust because a misbehaving unprivileged task cannot corrupt critical data used
by the OS kernel and other tasks.

* Vector Table relocation—again, this is a feature already existing in the Cortex-M3
processor. By default, the vector table is defined as the start of the memory (address
0x00000000). The Vector Table Offset Register allows the vector table to be defined in
other memory locations such as a different program memory location or in SRAM. This
is very useful for microcontroller devices, which might have separated vector table for
boot process and user applications.

* Single Cycle I/O interface—this is a separate bus interface specifically added to allow
frequently accessed I/O registers to be read/write in a single cycle. Without this feature,
a load/store operation needs to go through the pipelined system bus, which needs two
clock cycles per access. This feature enables microcontrollers or embedded system to

have higher I/O performance, as well as higher energy efficiency in I/O intensive

operations.
Internally to the processor design, there are also some significant changes. Instead of using
a three-stage pipeline as in the Cortex-MO and Cortex-M3 processors, the Cortex-M0+
processor is designed with a two-stage pipeline. This reduces the number of flip-flops in

the processor, and hence reduces the dynamic power, and provides slightly higher
performance at the same time because the branch penalty is reduced by one clock cycle.

In the Cortex-MO+ processor pipeline, as shown in Figure 1.5, a small part of the
instruction decoding operations is carried out as soon as the instruction enters the

arm.com/about/newsroom/26419.php).

I Cortex-M0 Processor—Fastest Licensing ARM Processor (http://www.

Introduction 15

|

—
- 1
|
Fipshine | Cortex-M0o+
stage | Processor Pipeline Main
; [stage Instruction |
[/ I{ | | decode i .
AU 08§ o _.../ Program Memer L ’“f i ."’I i ~
¢] (6g ﬂnm{m &) f f : Insteuction Buffer !
/ ; | “ v | !
b(} = Control |
[’ - Pipeling [
| Pre dec s R"’It"‘ﬂ
| < Al ;‘ j s
| Address ',‘ ‘
‘/ Beneration I ,i

lostruction N
A
/o
Instruction #N+1 / |
Pre-decode "

Figure 1.5

Two-stage Pipeline in the ARM® Cortex®-Mo+- Processor.

Processor byg interface, The rest of the instruction decoding is combined with the
¢Xecution Stage.,

designs.

consumed by the memory system,
In order 1o reduce system-leve] power, additiona] Optimizationg have beep implemented to
reduce the program memory accesges:

First, by shortening the Processor to g two-stage pipeline design, the branch shadow of the
pProcessor jg reduced. In g pipeline processor, when 4 branch instruction I8 executed, the

16 Chapter 1

Maximum branch shadow is 2
instructions (1 word) and minimum
is 0 instruction

~~~~~ §  (branch) pre | |

Branch shadow

Program flow Instructions fetched but not
executed due to branch

Figure 1.6
Power wastage reduction by reducing branch shadow. Image courtesy of ARM®.

mstructions following the branch instruction would have been fetched by the processor.
These instructions fetched are called branch shadow (Figure 1.6), and they are discarded
by the processor and hence a long branch-shadow means wasting more energy.

Secondly, when a branch operation takes place and if the branch target instruction
occupies only the second half of a 32-bit memory space (as shown in Figure 1.7), the
instruction fetch is carried out as a 16-bit transfer. In this way, the program memory can
switch off half of the byte lanes to reduce power.

The amount of power reduction by these techniques depends on how often branch
operations are carried out in the application code.

Finally, in linear code execution, the program fetches are handled as 32-bit accesses. Since
most of the instructions are 16-bit, each instruction fetch can provide up to two
instructions. This means that the processor bus can be in idle state half of the time if there

Ox00.601006 | 0x00001008 0x0000100A | 0x0000100C 0x0000100D

- Lt}

Word boundry

by

|

Program flow

Figure 1.7
Power wastage reduction by fetching branch target with minimum transfer size.
Image courtesy of ARM®.



Introduction 17

HIRANS Ww g v iy /'v OLF
AV EY
5 s

HROATA

Eetrk {n'
T

Figure 1.8
Program fetch power reduction by fetching up to two instructions at a time
®
Image courtesy of ARM

18 no data access instruction executed (Figure 1.8). Chip designers can utilize this

characteristic to reduce the power consumption in the program memory (e.g., flash
memory).

Another important enhancement in the Cortex-M0-+ processor is the adding of a feature
called Micro Trace Buffer (MTB). This unit enables low-cost instruction trace, which is
very useful during software development, for example, helping to investigate the reason
for a software failure. The details of the MTB are covered in Chapter 13 and appendix E.

The Cortex-MO+ processor have additional enhancements when compared to the
Cortex-MO processor in terms of chip design aspects (most of these are invisible to
microcontroller users). For example, a hardware interface was added to allow the startup

sequence of the processor to be delayed, which is useful for many SoC designs with
multiple processors.

Today, many microcontroller vendors already started offering microcontroller products
based on the Cortex-M0+ processors.

1.2.7 Applications of the Cortex-MO and Cortex-M0+ Processor

The Cortex-MO0 and Cortex-M0+ processors are used in a wide range of products.

Microcontrollers

The most common usage is microcontrollers. Many Cortex-M0 and Cortex-M0+
microcontrollers are low-cost devices and are designed for low-power applications. They
can be used in applications including computer peripherals and accessories, toys, white
goods, industrial and HVAC (heating, ventilating, and air conditioning) controls, home
automation, etc.

When comparing the microcontrollers based on the Cortex-MO and Cortex-M0+
processors to traditional 8-bit and 16-bit microcontroller products, the Cortex-M



18 Chapter 1

microcontrollers allow embedded products to be built with more features, 'mo'rc :
sophisticated user interface, due to support of larger address space, powerful interrup
control, and higher performance

The better performance and small size also bring the benefit of higher energy efficiency.
For example, for the same processing task, you can finish the processing quicker and allow
the system to stay in sleep modes longer.

Another advantage of using ARM Cortex-M processors for microcontroller applications 1s
that they are very easy to use, Therefore it is very appealing to many microcontrolier
\cmlnrQ as product support and educating the users can be challenging for some other
processor architectures,

ANICs and ASSPs

Another important group of applications for the Cortex-M0 and Cortex-MO-+ Processors
are ASICs and ASSPs. For example, there are a number of touch screen controllers,
sensors, wireless controllers, Power Management ICs (PMIC), and smart battery
controllers designed based on the Cortex-M0 or Cortex-M0+ processors.

In these applications, the low gate count advantage of the Cortex-MO and Cortex-M0-+
processors allow high performance processing capability to be included in chip designs
that traditionally only allow 8-bit or simple 16-bit processors to be used.

System on Chips

For complex SoC, the designs are often divided into a main application processor system
and a number of subsystems for: /O controls, communication protocol processing, and
system management. In some cases, the Cortex-MO and Cortex-MO0-+ processor can be
used in part of the subsystems to off-load some activities from the main application
processor, and to allow small amount of processing be carried out while the main
processor is in standby mode (e.g., in battery powered products). It might also be used as a
System Control Processor (SCP) for boot sequence management and power management.

1.3 What Is Inside a Microcontroller
1.3.1 Typical Elements Inside a Microcontroller

There can be many components inside a basic microc

ontroller. For example, a simplified
block diagram is shown in Figure 1.9:

In the diagram there are a lot of acronyms. They are explained in Table 1.5

As shown in Figure 1.9, there can be a lot of components in

a microcontroller (not to
mention other complex interfaces like Ethernet, USB, etc.). |

N some microcontrollers you



Technical Overview

2.1 What are the Cortex™-MO and Cortex-MO+ Processors?

The ARM™ Cortex-Mo) processor and Cortex-MO+ proces

Ssors are both 32-bit processors,
Their internal registers in the register banks, data paths, and the bus interfaces are all 32

bit. Both of them have a single main system bug interface, therefore they
Von Neumann buy architecture.

are considered aq
The Cortex-M0 4+ processor has an optional single cycle 1/0) interface that is primarily for
faster peripheral 170 register accesses, Therefore, it is possible to say the Cortex-Mo) 4

processor has limited Harvard bus architecture capability as instruction access and /O
register accesses could be carrie

that aithough there can be two bus interfaces,

and Cortex-M0+- processors are as follows:
Processor pipeline
*  The Cortex-M0 processor has a three-

*  The Cortex-M0+ processor has a two
execute)

Instruction set

stage pipeline (fetch, decode, and execute)
-stage pipeline (fetch + predecode, decode +

size, only a few of them are 32 bit.
* In general, the Cortex-M processors are classified as

32-bit addressing supporting up to 4 GB of memory space

* The system bus interface is based on an on-chip bus protoco] called AHB-Lite,
supporting 8-bit, 16-bit, and 32-bit data transfers

The Definitive Guide 1, ARM™ Cortex”-MO and

Cortex-Mo+ Processors, Bittps//d . dai org/ 10 1014,
Copyright © 2015 Eisevier Inc. Al rights reserved

29

YBYTHRO- 12800277 BB0e0G2 5



30 Chapter 2

I

Interrupt Handling

+  The processors include a built-in interrupt controller called the Nested Vectored Interrupt
Controller (NVIC). This unit handles interrupt prioritization and masking functions. It
supports up to 32 interrupt requests from various peripherals (chip design dependent), an
additional Non-Maskable Interrupt (NMI) input, and also support a number of system
exceptions.

« Each of the interrupts can be set to one of the four programmable priority levels. NMI
has a fixed priority level.

Operating Systems (OS) support

« Two system exception types (SVCall and PendSV) are included to support OS operations.

«  An optional 24-bit hardware timer called SysTick (System Tick Timer) is also included
for periodic OS time keeping.

+  The Cortex-M0+ processor support privileged and unprivileged execution level
(optional to chip designers). This allows OS to run some of the application tasks with
unprivileged execution level and impose memory access restrictions to these tasks.

+  The Cortex-M0+ processor has an optional Memory Protection Unit (MPU) to allow
0S to define memory access permission for application tasks during run time.

Low Power support

«  Architecturally two sleep modes are defined as normal sleep and deep sleep. The exact
behaviors in these sleep modes are device specific (depends on which chip you are
using). Chip designers can also add device specific power saving mode control registers
to expand the number of sleep modes or to allow the sleep mode behavior for each part
of the chip to be defined.

+  Sleep mode can be entered using WFI (Wait for Interrupt) or WFE (Wait for Event)
instructions, or using a feature called Sleep-on-Exit to allow the processor to enter sleep
automatically.

« Additional hardware level supports t0 enable chip designers to create better power
reductions based on the sleep mode features, for example, the Wake-up Interrupt
Controller (WIC).

Debug

«  The debug system is based on the ARM CoreSight™ Debug Architecture. It is a scalable
debug architecture that can support simple-single processor designs to complex multi-
processor designs.

+ A debug interface that can either be based on JTAG protocol (4 or five pins), or Serial
Wire Debug protocol (2 pins). The debug interface allows software developers to access
debug features of the processors.

«  Support up to four hardware breakpoints, two data watchpoints, and unlimited software
breakpoint using BKPT (breakpoint) instruction.

« Support basic program execution profiling using a feature called Program Counter (PC)
Sampling via the debug connection.



‘ ‘Technical Overview 31

I “( ( ()”( X ) { ,"}(‘ SR has Yy O “ )""' f ature ” ol ' M' ] ; ’f i (lv' l l’
M( ' € i N ar " ¢ (311 caned “ro race utier
)-

this i
18 provide instruction trace

The C
ortex-M Proc
| CORSOIS AT ¢ ,
form of Verilog sous 18 ;m configurable designs. They are delivered to chip d
p source code files witl ' " chip designers in
select. In t s with o number of patamete : i . i
} siv was. chiy dest yeters that chip designers car
their projects to o vip designers can omit some of the features that qrrc: unn:; ers can
. Y i v T kL T
save power and reduce silicon area. As a result, you fi giﬁwry for
£ ' ‘ can finc

microcontrollers
ers based on the U
ortex-MO and Cortex-M0O
- b processor with diffe
srent number

\'1- .\‘ll','\“ l\‘(’ 1 STun 1 ‘ 1 o rw w ' ' MP‘
\ ln' s ) oy 8§50 ¢ 18] ¢ optiona

During the de n—

:«,\‘Mcnt and ‘t;:f::::‘;“‘:;\; (:c'.;_”‘l‘t‘ \‘ ey [*r(?Ctts‘.:()r is integrated with the rest of the

chip design tools, The "mi(n m‘;lu'\ :n‘n:;?.(m.e(l n.f logic gates and then transistors layout using

these stages based on the QC':Z‘}‘l.ﬂu,;d‘umncs like maximum clock frequency are defined at

Soaitn: commtraiits, At ““-- tulm‘( uctor pmc.css selected for the project and various

ot A0 (*.;,;lt‘x,;\;(() jon, the exact m.a‘:.umnm speed and power consumption of the
104 processor on different products can also be different from

cach other.

module mux (
input wire A,
input wire B, N T
input wire Sel, \ | 15 ,f
output wire ¥ ‘ J | ] ) [

)
assign Y = (Sel) 7B : A; /
endmodule |/ l
Verilog code |

Transistor layout

Logic gate netlist

Figure 2.1
simplified chip design flow.

2.2 Block Diagrams

d block diagram of the C
e register banks, AL

h fetch stage, decode st
sters. A few of the registers in
eneral data processing.

® . e
ortex-MO processor 15 shown in Figure 2.2

U, data path, and control logic. ltis

age, and execution stage. The
he register bank have

A simplifie
The processor core contains th

three-stage pipeline design wit

register bank has sixteen 32-bit regi

ges (€2 pC). The rest arc available for g
Is and a NMI input. It contains the

\terrupt requests and current

an interrupt 1

ute the

special usa
nterrupt request signa
iparing priority between ir
(errupls can be handled automatically. It
.5 with the processor o that the processor can exec

The NVIC accepts up o 321
y required for con
| so that nested in
NVIC communicate

functionalit
prionty leve
accepted, the

correct interrupt handler.



32 Chapter 2

Power management interface

Il

[ >.
! i | Wakeup |
[ > Interrupt | JTAG/
‘ | l 1 - Controller | Serlal-Wire : o= Connection
i i (WIC) Debug to debugge
! 1 | - Interface L
s —J )
interrupt | | 1 »  Nested ot
requests and | gl Vector B 1
NMI | 1 R Interrupt Processor Debug |
l > Controller | core subsystem |
i . (NVIC) ) |
| £ T % %
1 ”
Internal Bus System "
P
rocessor AHB LITE
System i
v bus interface
(Integration Cortex-M0 unit
layer 5
ver Processor Bus Interface

Memory and
Peripherals

. Figure 2.2
A simplified block diagram of the Cortex®-MO0 Processor.

The WIC is an optional unit. In low-power applications, the microcontroller can enter
standby state with most parts of the processor powered down. Under this situation, the

WIC can perform the function of interrupt masking while the NVIC and the processor
an interrupt request is detected, the WIC informs the power

core are inactive. When
the system so that the NVIC and the processor core can then

management to power up

handle the rest of the interrupt processing.

ntains various functional blocks to handle debug control, program

hpoints. When 2 debug event occurs, it can put the processor
an examine the status of the processor

The debug subsystem €O

breakpoints, and data watc
core in a halted state $O that embedded developers €

at that point.

m, data path in the processor core, and the AHB-Lite bus interface
Lite is an on-chip bus protocol used in many ARM® processors.
f the AMBA® (Advanced Microcontroller Bus Architecture)
hitecture developed by ARM and widely used in the IC

The internal bus syste
are all 32-bit wide. AHB-
This bus protocol is part O
specification, which is a bus arc

design industry-



Technical Overview 33

The JTAG or Serial Wire interface units provide access to the bus system and debugging
functionalities. The JTAG protocol is a popular 4-pin (5-pin if including a reset signal)
communication protocol commonly used for IC and PCB testing. The Serial Wire protocol
1S 4 newer communication protocol that only requires two wires, but it can handle the same
debug functionalities as JTAG. As illustrated in the block diagrams (Figures 2.2 and 2.3),
the debug interface module is separated from the processor design. This is required in the
CoreSight™ Debug Architecture where multiple processors can share the same debug
connections. There are a number of additional signals for multiprocessor debug support not

shown in the diagrams.

The Cortex-M0O+ processor is very similar (as shown in Figure 2.3) to Cortex-MO
processor. The only addition is the adding of the optional MPU, single cycle VO interface
bus and the interface for the MTB. The processor core internal design is also changed to a
two-stage pipeline arrangement.

¥ wakeuw N JTAG / '
> interrupt Bufler (MTB) Serial-Wire | » CoOnnection
» Controler Debug to debugger
{(WiC) interface
> Trace
11 Ftertacey
> Hesioo
Interrupt Vi
requests and - > Processor core Debug
NMi > :w::: subsysiem
> sN‘i'C.. P racy ¥

System bus nterface VO interface
(integration ¢ rex-20+ = -
) Processor < Bus interface -~
- - < 5 — S
Memory and Fast peripherais
Periot
Figure 2.3

A simplified block diagram of the Cortex®-M0+ processor.



34  Chapter 2
Ly " ., Y . N § ¥ ol o
The MPU is a programmable device used to define access permission of the memory map
In wmc‘ of the applications where an O8 is used, application tasks can be executed with

an unprivileged execution tfevel with restrict memory access defined by the MPU, which is
programmed by the OS.

'r » N i ovoele 1V : " v N X
llk ;'}“U‘ eycle VO interface provides another bus interface with faster access compared to
the / . . uvhe . pach ' . T e

IB-Lite system bus (pipelined operation). The MTB is used to provide instruction trace.

In both Cortex-MO and Cortex-MO-| processors, a number of components in the
PRRIOSSOMER RS optional. For example, the debug support, MPU and the WIC are all
opnmf;ﬂ_ Some other components like the NVIC are configurable: allowing chip designers
to define the features available, tor example, the number of interrupt requests ( IRQ).

2.3 Typical Systems

As you can see from the block diagrams, the Cortex®-M0 and Cortex-M0+ processors do
not ‘Comain memories and peripherals. Chip designers need to add these components to the
d§31gns. As a result, different Cortex-M processor-based microcontrollers can have
different memory sizes, address map, peripherals, interrupt assignment, etc.

In a simple microcontroller design based on a Cortex-M processor, the design would
consist of the following:

« A memory for program code storage, usually a Read-Only-Memory (ROM) component,
or reprogrammable memory technologies such as flash memory.

e A read—write memory for data (including variables, stack, etc.), usually based on Static
Random Access Memory (SRAM).

« Various types of peripherals.

« Bus infrastructure components for joining the processor to all the memories and
peripherals.

In some cases, there can also be a separate ROM device with boot code to boot up the

microcontroller before the program in the user flash is executed. This is typically called

boot ROM or boot loader.

For a simple design with Cortex-M0 processor, the design could look like the one shown

in Figure 2.4.

A typical design based on the Cortex-M0 processor might partition the bus system 1nto

two parts, which are as follows:

the memories including ROM, flash memory (for user program

« System bus connected to
bus bridge to the peripheral

storage), the SRAM, a few number of peripherals, and a

bus system.



Technical Overview 35

Interrupts

i < 1) ;

AR e Digital loglc

f

f l wetem bus (AHB Lite) ) Memories
§ . ’ Bus | B oigital peripherals
{ Flag

Boot ROM | M»:mw ] Bridge |

Analogue / Mixed
Signal Peripherals

Peripheral bus (APB)

AA AAAL

,
£
’

&5 _ Vopads | )

Figure 2.4
A simple system with the Cortex®-M0 Processor.

*  The peripherals are connected to the peripheral bus, which might have a different oper-
ating frequency compared to the system bus.

It is quite common for some of the peripherals to be connected to a separated peripheral
bus, which is linked to the main system bus via a bus bridge. This bus protocol for the
peripheral bus is typically based on APB, which is a bus protocol defined in the AMBA®.

The uses of a separated APB peripheral bus are as follows:

*  Allows lower hardware cost because the APB
simpler than AHB-Lite (pipelined operations)

*  Allows the peripheral bus to run at a differe

* Avoids large combinational logic in the bus infrastructure for the main system bus.
which could become the bottle neck in terms of getting to get high operating frequency.
Many peripherals might present in a microcontroller designs and the bus
ripherals can become quite large.

protocol (non-pipelined operations) is

nt clock frequency than the main system bus

fabric for pe-

Another group of important connections are the interrupts—A number of peripherals can

generate interrupt requests, including the General Purpose Input/Output (GP10) modules.
In most microcontroller designs, external devices connected to certain GP1O pins can
generate interrupt request to the processor via some additional conditioning and
synchronization logic.



36 Chapter 2

Single Uyele 1O

ww ;w "_'"’f'“’fj‘_ bus
(e G9O)

‘ IR\}Q vﬂtpwupﬂ m
{IRQs, NN Trace
X o » intetface Digital logic
A

i ] l ] Systermn bus (AHB Lite) Memaories

 MTe ] i
Boot ROM Mna;h I s::;e Digital Peripherals

emo

v ! - Analogue / Mixed
SRAM ; Signal Peripherals

Peripheral bus (APB)

1/0 pads

Figure 2.5
A simple system with the Cortex®-M0+ Processor.

For a system based on the Cortex-M0+ processor, the system design can be very similar,
like the one shown in Figure 2.5.

In this design, the high-speed peripherals are moved to the single cycle I/O interface bus
for faster /O performance, and the MTB is added between the AHB-Lite system bus and
the SRAM for support instruction trace capture.

Potentially the processor might not be the only component in the system that can generate

y microcontroller products, there is also a component called Direct
controller can carry out

intervention (Figwre 2.6)

bus transactions. In man
Memory Access (DMA) controller. Once programmed, the DMA

memory accesses on requests from peripherals without processor
ansfers between memory and peripherals, or
between memories (e.g., to accelerate memory copy). This is commonly needed for
microcontrollers with high bandwidth communication interface like Ethernet or QSB.
However, it can also benefit some low-power applications, for example, by‘avoxdmg
waking up the processor from sleep mode to collect small amount of data from

peripherals.

The DMA controller can perform data tr



LLiV/RA Vg VY ARLL t}lxv;&vbwu W W W MW AW ¥ W

4.2.2 Registers and Special Registers

In order to perform data processing and controls, a number of registers are required inside
the processor core. If data from memory is to be processed, it has to be loaded from the
memory to a register in the register bank, processed inside the processor, and then written
back to the memory if needed, or kept in the register bank for another operation. This 1s
commonly called “load-store architecture.” By having a sufficient number of registers in
the register bank, this mechanism is easy (o use, and is C-friendly. It is easy for C
compilers to compile a C program into machine code with good performance.

The Cortex-M0 and Cortex-MO-+ processor provides a register bank of 16 32-bit registers
(most are general purposed, R13—R15 has special purposes), and a number of special
registers (Figure 4.3).



Architecture 91

Register bank
General Purpose Register
General Purpose Register
General Purpose Register
Ganweral Purpose Ragister
General Purpose Register
General Purpose Reglstar
General Purpose Registar
General Purpose Ragister
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register

General Purpose Register
Stack Pointer (SP)
Link Register (LR)

Program Counter (PC)

~ R13 (banked)
R4

L__Ri5_ ]

PSP

-

Main Stack Pointer |

Processs Stack Pointer

-

Low Registers

i

High Registers |

Special Registers

__E(FSR | Program Status Registers

1
|_APSR | EPSR | IPSR |

Application Execution Interrupt
PSR PSR PSR

L APRLM_/EE_J Interrupt Mask Register

[_CONTROL ] Stack defnton

4

Figure 4.3

Registers in the Cortex®-M0 and Cortex-M0+ processors.

The detailed descriptions for these registers are as follows:

RO—R12

Registers RO—R 12 are for general uses. Due to t
instructions, many of the Thumb instructions ¢

called the low registers.

registers. When using these registers with ARM® d
assembler, you can use either upper case
register to be used. The initial values of

R13, Stack Pointer

* The Main Stack Pointer (MSP, or

b

used in Thread mode (when not h

andling exceptions).

r SP_process in ARM documentation

he limited space in the 16-bit Thumb®
an only access RO—R7, which are also
While some instructions, like MOV (move), can be used on all
evelopment tools such as the ARM
(e.g., RO) or lower case (e.g., 10) to specify the
RO-R12 at reset are undefined,

) can only be




92 Chapter 4 I

When using ARM development tools, you can access the stack pointer using cither “R13”
or “SP” Both upper case and lower case (€.£., “t13" or “sp”) can be used. Only one of the
stack pointers is visible at a given time. However, you can access to the MSP or PSP
directly when using the special register aceess instructions MRS and MSR. In such cases,
the register names “MSP™ or “pSP” should be used.

The lowest 2 bits of the stack pointers are always zero and writes to these 2 bits are ignored.
In ARM processors, PUSH and POP are always 32-bit accesses because the registers are
32-bit, and the transfers in stack operations must be aligned to a 32-bit word boundary. The
initial value of MSP is loaded from the first 32-bit word of the vector table from the program

memory during the start-up sequence. The initial value of PSP is undefined.

It is not necessary to use the PSP. In many applications, the system can completely rely on
the MSP. The PSP is normally used in designs with an 0S, where the stack memory for
0S Kemel and the thread-level application codes must be separated.

R14, Link Register

R14 is the Link Register (LR). The LR is used for storing the return address of a subroutine
or function call. When BL or BLX is executed, the return address is stored in LR. At the end
of the subroutine or function, the return address stored in LR is loaded into the program
counter (PC) so that the execution of the calling program can be resumed. In the case where
an exception occurs, the LR also provides a special code value which is used by the
exception return mechanism. When using ARM development tools, you can access to the
LR using either “R14” or “LR.” Both upper and lower case (e.g., “r14” or “Ir””) can be used.

Although the return address in the Cortex-M0/MO+ processor is always an even address
(bit[0] is zero because smallest instruction are 16-bit and must be half-word aligned), bit
zero of LR is readable and writeable. In the ARMv6-M architecture, some instructions
require bit zero of a function address set to 1 to indicate Thumb state.

R15, Program Counter

R15 is the PC. It is readable and writeable. A read returns the current instruction address
plus four (this is caused by the pipeline nature of the design). Writing to R15 will cause a
branch to take place (but unlike a function call, the LR does not get updated).

In the ARM assembler, you can access the PC using either “R15” or “PC,” in either upper
or lower case (e.g., “r15” or “pc”). Instruction addresses in the Cortex-M0/MO+ processor
must be aligned to half-word address, which means the actual bit zero of the PC should be
zero all the time. However, when attempting to carry out a branch using the branch
instructions (BX or BLX), the LSB of the PC should be set tol.! This is to indicate that

! Not required when a move (MOV) or add (ADD) instruction is used to modify the PC.




Architecture 93

the branch target is a Thumb program region. Otherwise, it can imply an attempt to switch
the processor to ARM state (depending on the instruction used), which is not supported
and will cause a fault exception.

XPSR, Combined Program Status Register

The combined Program Status Register (PSR) provides information about program
execution and the ALU flags. 1t consists of the following three PSRs (Figure 4 4);
* Application PSR (APSR),

* Interrupt PSR (IPSR), and

*  Exccution PSR (EPSR)

bit

N | ‘?a 24| 16| 0| 0
APSR ;Nizicjv' Reserved

LT

31 2| L 7 8 5 0
IPSR ’ Reserved ISR Number |

. B | R

EPSR !L Reserved l T

Reserved

Figure 4.4
Application PSR (APSR), Interrupt PSR (IPSR), and Execution PSR (EPSR).

The APSR contains the ALU flags: N (negative flag), Z (zero flag), C (carry or borrow )
flag), and V (overflow flag). These bits are at the top 4 bits of the APSR. The common use
of these flags is to control conditional branches.

The IPSR contains the current executing ISR (Interrupt Service Routine) number. Each
exception on the Cortex-M0/MO+ processor has a unique associated ISR number (exception
type). This is useful for identifying the current interrupt type during debugging and allows an
exception handler that is shared by several exceptions to know which exception it is serving.

The EPSR on the Cortex-M0/MO0+ processor contains the T bit which indicates that the
processor is in the Thumb state. On the Cortex-M0/M0+ processor, this bit is normally set
to 1 because the Cortex-M processors only support Thumb state. If this bit is cleared, a
HardFault exception will be generated in the next instruction execution.

These three registers can be accessed as one register called XPSR. For example, when an
interrupt takes place, the xPSR is one of the registers that is stored on to the stack memory
automatically and restored automatically after returning from an exception. During the
stack store and restore, the xPSR is treated as one register (Figure 4.5).



94 Chapter 4

e

bit bit
3 28 24) 16| 8| 5 0

! w
XPSR 1N}zl01v T

Roserved 1SR Number |

Roserved

Figure 4.5
xPSR.

is only possible through special register access instructions.
affect conditional branches and the carry flag in the
ocessing instructions.

Direct access to the PSRs
However, the value of the APSR can
APSR can also be used in some data pr

PRIMASK—Interrupt Mask Special Register

a 1-bit wide interrupt mask register. When set, it blocks all

pt (NMI) and the HardFault exception.

y level to 0 which is the highest value for a

The PRIMASK register is
interrupts apart from the Non-Maskable Interru
Effectively it raises the current interrupt priorit
programmable exception (Figure 4.0).
bit bit
’31 L \ ‘ 0 ’

PRIMASK l Reserved n

PRIMASK

Figure 4.6
PRIMASK.

The PRIMASK register can be accessed using special register access instructions (MSR,
MRS) as well as using an instruction called CPS. This is commonly used for handling

time critical routines.

CONTROL—Special Register

As mentioned earlier, there are two stack pointers in the Cortex-MO0 and Cortex-MO+
processors. The stack pointer selection is determined by the processor mode as well as the
configuration of the CONTROL register (bit ]—SPSEL). The Thread mode of the
Cortex-M0+ processor can either be privileged or unprivileged, and this is also controlled

by CONTROL (bit 0—nPRIV) (Figure 4.7).

bit

31
CONTROL [ Reserved l X 1
|

e e 1 ? T

SPSEL (Stack definition) ——
nPRIV (not Privileged) / Reserved

Figure 4.7
CONTROL.




Architecture 95

d, but can be switched to the PSP in Thread mode (when not
tting bit[1] in the CONTROL, register. During running
gsor is in handler mode), only the MSP is used,
The bit[1] of CONTROL register can only be
and return mechanism

After reset, the MSP is use
running an exception handler) by se
of an exception handler (when the proce
and the CONTROL, register reads as zero
d in Thread mode, or via the exception entrance

change
(Figure 4.8),
Thumb State
Exception Handler Mode Exception
request Execuling axception handler return

' CONTROL[1] =0
/ MSP selected )‘

"~ Thread Modo

Executing normal code

Start — CONTROL[1] =0 CONTROL[1] =1

MSP selected PSP selected
. 4
Figure 4.8
Stack pointer selection.

r is for selecting between Privileged and Unprivileged
all Cortex-MO

efore this bit is always

Bit[0] of the CONTROL registe
states during Thread mode. Some of the Cortex-MO+ devices and

processor-based devices do not support unprivileged state and ther

zero (Figure 4.9).

a Thumb State Y

Exception Handler Mode Exception
request Executing exception handler return
Always Privileged

Thread Mode
Executing normal code

CONTROL[0] = 0 CONTROL[0] = 1

Start —
Privileged Unprivileged

Figure 4.9
Privileged state selection.



96 Chapter 4

Access of Registers and Special Registers

In C/C++ programming or any other high level languages, the registers in the register
bank (RO—R12) can be utilized by the compiler automatically. In most cases, you do not
need to worry about which registers being used. unless you are interfacing assembly code
and C/C++ code (such mixed language development will be cover in Chapter 21).

The other special registers need to be accessed using some special instructions (MRS and
MSR). The CMSIS-CORE provides a number of APIs for such usages. However. please note
that some of these special registers cannot be accessed or changed by software (Table 4.1).

Table 4.1: Access limitations to special registers

Privileged Unprivileged ;
. APSR R'W R/W ‘i
5 EPSR No access (T bit read as zero) No access (T bit read as zero) },
. IPSR Read only Read only ;
| PRIMASK R/W Read only ‘
| CONTROL R/W Read only *

4.2.3 Behaviors of the APSR

Data processing instructions can affect destination registers as well as the APSR which is
commonly known as ALU status flags in other processor architectures. The APSR is
essential for controlling conditional branches. In addition, one of the APSR flags, the C

(Carry) bit, can also be used in add and subtract operations.
There are four APSR flags in the Cortex-M0 ad Cortex-MO0+ processors (Table 4.2).

Table 4.2: ALU flags on the Cortex"-M0 and Cortex-M0+ processors

N (bit 31) Set to bit[31] of the result of the executed instruction. When it is “1,” the result has a
negative value (when interpreted as a signed integer). When it is “Q,” the result has a
positive value or equal zero.

Z (bit 30) Set to “17 if the result of the executed instruction is zero. It can also be setto “17 aftera |
compare instruction is executed if the two values are the same. §-

C (bit 29) Carry flag of the result. For unsigned addition, this bit is set to «1” if an unsigned
overflow occurred. For unsigned subtract operations, this bit is the inverse of the borrow

output status. -
V (bit 28) Overflow of the result. For signed addition or subtraction, this bit is set to “1°

overflow occurred. i

if a signed g

A few examples of the ALU flag results are as given in Table 4.3.



Architecture 97

Table 4.3: ALU flags operation examples

Results, flags AT E i

Operation ; :
0x70000000 + 070000000 Result k0000000, N~ 1, 7 0,C=0,V=1
nnuuonmuuwen«unﬂnnnnn Reecult Ox 20000000, N 0,7=01¢ 1, V=1
’ 0xR0000000 + 0xBOOOC0O0O Result = 000000000, Ne0,72=1,C 1,V=1 !
' Ox00001234 Ox 00001000 Result 0x00000234, N 0,7-0,¢ 1, V=0 ‘
! 0x00000004 0x 00000006 Result = OxFFFFFFFE, N 1,7=0,C=0,V 0 ‘;
[ OxFEFFEFFE = OXFPFFRFFC Result = 0x00000003, N-=-0,7~0C=1V= 0 |
! Result = 0x00000001, N=02=0C=1V=0 ‘,
=0, C=0,V=1 %

Ox80000005 0x80000004
| 0x70000000 ~ 0xF0000000
| OxADOOOOOD 0xA0000000

Result = 0x80000000, N = 1,7
Result = 0x00000000, N = 0, Z=1,C=1V= 0

In the Cortex-MO and Cortex-MO+ processors, almost all of the data processing instructions
modify the APSR: however, some of these instructions do not update the V flag or the C flag.
For example, the MULS (multiply) instruction only changes the N flag and the Z flag.

r handling data that is larger than 32-bits. For example, we

The ALU flags can be used fo
ion into two 32-bit additions. The

can perform a 64-bit addition by splitting the operat
pseudo form of the operation can be written as follows:

/ Calculating Z = X + Y, where X, Y and Z are all 64-bit

7[31:0] = X[31:0] + Y[31:0]: // Calculate lower word addition,

// carry flag get updated
]=X[63:32]+Y[63:32] +Carry; // Calculate upper word addition.

tion in assembly code can be found in

7[63:32
An example of carry out such 64-bit add opera
Chapter 6 (Section 6.5.1).

The other common usage of APSR flag is to control branching. More on this will be covered
in Chapter 5 (Section 5.4.8), where the details of the condition branch instruction will be

covered.

4.3 Memory System

4.3.1 Overview

®

All ARM® Cortex®-M processors have a 4 GB of memory address space. The memory
space is architecturally defined into a number of regions, with each region having a
recommended usage to help software porting between different devices (Figure 4.10).

The Cortex-MO and Cortex-MO+ processors contain a number of built-in components like
tbc NVIC (the interrupt controller) and a number of debug components. These are located in
hxc'd memory locations within the system region of the memory map. As a result, all the
devices based on the Cortex-M processors have the same programming model for interrupt
control and debug. This makes it convenient for software porting as w;ll as helping debug



98 Chapter 4

) R OxEOOF FFFF OXEOQQOEFFF
OXFFFFFFF ]
Private peripherals including olibisid p
built-in interrupt controfler ) rivate
(NVIC) and debug System Peripheral Bus Sé:‘:; E.‘:Sogtsr;)l
components . . (PPB)
OxE 0000000 Private Poripheral Bus ~—
OXOF FFFFFF OxE0000000 0xE000E000
Mainly used for ext |
per:p'yhe‘l,al& Faxiams External Device  1GE
0xA0000000
OXOFFFFFFF o
Mainly used for external
e External RAM  1GB
0x60000000
) Ox5FFFFFFF
Mainly used for peripherals. Peripherals  0.5GB
0x40000000
Mainly used for data memo Ox3FFFFFFF
(e Ztatjc RAM K SRAM 0.568
(eg. ) 0x20000000
Mainly used for program Ox1FFFFFFF
code. Also used for default CODE 0.5GB
exception vector table 0x00000000
Figure 4.10
Memory map.

tool vendors to develop debug solutions for the Cortex-MO-based microcontroller or System-

on-Chip (SoC) products.

The memory space is shared between instruction memory, data memory, peripherals

processor’s built-in peripherals (e.g., the interrupt controller), and processor’s debug
components. However, the debug components are not visible to the software running on
f view this is implementation defined, and existing

the processor (from architecture point 0
designed to make the debug components to be

Cortex-MO and Cortex-M0+ processors are
visible only from debugger). This is different from Cortex-M3, Cortex-M4, and Cortex-M7

re privileged codes can access the debug components.

In most cases, the memories connected to the Cortex-M processors are 32-bits, but'it is also
possible to connect memory of different data widths to a Cortex-M processor with suitable
memory interface hardware. The memory system in Cortex-M processors supports memory
transfers of different sizes such as byte (8-bit), half word (16-bit), and word (32-bit). The
Cortex-MO and Cortex-MO+ processor designs can be configured to support either little
endian or big endian memory systems, but cannot switch from one to another in an

implemented design.

processors, whe

Since the memory system and peripherals connected to the Cortex-MO or Cortex-MO+

Processors are developed by microcontroller vendors or SoC designers, different memory
sizes and memory types can be found in different Cortex-M0/MO-+-based products.



Architecture 99

4.3.2 Single Cycle I/O Interface

The Cortex-MO-+ Processor has an optional feature, which allows chip designer to add a
main system bus), which allows certain

separated bus interface (in addition to the
le clock cycle. This enables the microcontroller

peripheral registers o be accessed in a sing
product to provide better performance in 1/0 operations, as well as improve energy
efficiency in 170 intensive applications.

When this feature is implemented, the address space connect to the single cycle 1/O
interface appears as a part of the main memory space, 0 from software point of view the
peripheral registers in the single cycle /O bus works in the same way as registers on the
AHB-Lite system bus. However, this interface can only be used for data accesses and does

not support instruction accesses (Fgure 4.11).

Address Single Cycle 1/0 interface

decoder to define e ye "
fast I/O memory Data Transfers in memory
space. space allocated for fast VO

are handled on this bus.
Processor Fast
Peripherals
System Bus
Data Transfers not belong System bus
to fast I/O space and (Pipelined operation,
instruction fetches. AHB Lite protocol)

AHB interconnect

vV VUVYYy

ROM RAM Peripherals

Figure 4.11
Optional single Cycle 1/O Interface on the Cortex®-MO0+ Processor.

The single cycle I/O interface is intended for connecting small number of peripherals, which
need faster access speed (e.g., GPIO). Peripherals like UART and timers are normally
connected via the AHB-Lite system bus because the associated operations typically do not
have short-latency requirement and do not occur frequently.

4.3.3 Memory Protection Unit

Another optional feature in the Cortex-MO+ processor is the MPU (MPU). This is a
programmable unit and is to be used with the privileged—unprivileged states of the



100 Chapter 4

processor. The MPU provides up to eight programmable regions, and each region can be
defined with different starting addresses, sizes, and memory access permissions.

In a multitasking system, an OS can run some of the application tasks in unprivileged state
and the OS can program the optional MPU each time it switches between tasks, so each of
the unprivileged application tasks run in their own permitted memory space and can only
access to memory locations allocated to them.

The configuration registers of the MPU is privileged access only so that an unprivileged
task cannot change the access permission to bypass the MPU.

More information about the MPU is covered in Chapter 12.

4.4 Stack Memory Operations

Stack memory is a memory usage mechanism that allows the system memory to be used as
temporary data storage that behaves as a first-in-last-out buffer. One of the essential elements
of stack memory operation is a register called the Stack Pointer. The stack pointer indicates
where the current stack memory location is, and is adjusted automatically each time a stack

operation is carried out.

In the Cortex®-M processors, the Stack Pointer is register R13 in the register bank.
Physically there are two stack pointers in the Cortex-M processors, but only one of them
is used at a time, depending on the current value of the CONTROL register and the state

of the processor (see Figure 4.8).

In common terms, storing data to the stack is called pushing (using the PUSH instruction)
and restoring data from the stack is called popping (using the POP instruction). Depending
on processor architecture, some processors perform storing of new data to stack memory
using incremental address indexing and some use decrement address indexing. In the
Cortex-M processors, the stack operation is based on a “full-descending” stack model.
This means the stack pointer always points to the last filled data in the stack memory, and
the stack pointer predecrements for each new data store (PUSH) (Figurc 4.12).

PUSH and POP are commonly used at the beginning and at the end of a function or
subroutine. At the beginning of a function, the current contents of the registers used by the
calling program are stored onto the stack memory using PUSH operations, and at the end of
the function, the data on the stack memory is restored to the registers using POP operations.
Typically, each register PUSH operation should have a corresponding register POP operation;
otherwise the stack pointer will not be able to restore registers to their original values. This
can result in unpredictable behaviors, for example, function return to incorrect addresses.

The minimum data size to be transferred for each push and pop operations is one word
(32-bit) and multiple registers can be pushed or popped in one instruction. The stack



Bluetooth Classic: Version 1.0-3.0

We have 3 factors that enable someone to distinguish the different Bluetooth
versions. They are power consumption, range, and data speed. Data packets
used and modulation schemes are the primary determinates of these factors.
The first Bluetooth version's release paved the way for the emergence of
wireless items such as speakers, headphones, Bluetooth beacons, and game
controliers used today.

Bluetooth Low Energy: Versions 4.0 - 5.0:

Riuetooth 4.0 was announced to the marketplace forming a new grouping
named Bluetooth Low Energy (BLE). It was geared towards installing
applications that require low power consumption and a GFSK modulation
scheme that would enable it to return insufficient data output of 1Mbps. Even
though its maximum data output is 1Mbps, BLE is still unsuitable for products
that need continuous data streaming.

Specifications and Features from Bluetooth 1.0 to
Bluetooth 5.0

a) Bluetooth 1.0

It was invented in 1998 was a significant groundbreaking discovery. As the
technology was somehow immature, challenges such as no anonymity were
encountered, but the technology is now outmoded with today’s standards.

Some of the minor challenges were fixed by Bluetooth version 1.1, but the
most significant problems were fixed after Bluetooth version 1.2. Significant
improvements included sustenance for adaptive frequency-hopping spread
spectrum (AFH) that minimized interference, quicker speed transmissions of
close to 721kbit/s, Host Controller Interface (HCI), improved discovery, and
Extended Synchronous Connections (ESCO).

b) Bluetooth 2.0

This version 2.0 was released in 2004. GFSK and phase-shift keying
modulation (PSK) are some of the main improved features in this version. The
role of GFSK is to improve the speed of data transfer by supporting the
Enhanced Data Rate (EDR).



The technology improved further after the launch of Bluetooth version 2.1 by -
supporting a new feature dabbed ‘simple. secure pairing” (SSP). it enhanced
the pairing experience. security. and extended inquiry response (EIR). thus

allowing improved devices’ filtering before establishing a connection.

¢) Bluetooth 3.0

This Bluetooth version was announced into the market in 2009. Over a
collocated 802 11 link, the Bluetooth 3.0 through the High Speed (HS) mode
enables the transfer of data with speeds of up to 24 Mbps. The Bluetooth
version 3.0 comes with other new specifications such as Ultra-wideband,
Enhanced Power Control, L2CAP Enhanced modes, Unicast Connectionless
Data, and Alternate MAC/PHY. Its high rate of power consumption has

significant drawbacks.

d) Bluetooth 4.0

Biuetooth version 4.0 was released in 2010. Back in those days, the version
was marketed as Bluetooth Smart and Wibree, although it still supported all
the previous versions’ features. BLE devices are powered by coin-cell
batteries making power consumption its significant change.

e) Bluetooth version 4.1

Bluetooth version 4.1 was released in 2013, hence improving the users’
experience further. This version enabled easy transfers of bulk data. It also
allowed multiple simultaneous roles and co-existed with LTE.

Other new features supported by this version include:

11n PAL

Minor duty cycle directed publicizing

« Partial time of discovery

« L2CAP Connection

« Dual-mode and topology

« LE link-layer topology

« Comprehensive interlaced scanning

« A fastinterval of data advertising

« Mobile wireless coexistence signaling services
Wideband speech from audio architecture updates

f) Bluetooth version 4.2



After the release of Bluetooth version 4.2 in 2014, it made it possible for the
release of the Internet of Things (loT). MOKOBIue and other manufacturers
are the first to enter the Bluetooth Internet of things industry, and also make a
total contribution to the development of Bluetooth.. Its main area of
improvements includes

» Link-layer privacy that extended the policies for scanner filters
Low energy secure connection that extended the length of Data packets
- Version 6 of the Internet Protocol Support Profile (IPSP)

*

g) Bluetooth 5.0

The version was presented by Bluetooth SIG in 2016, although it was Sony in
their product Xperia XZ Premium who first implemented this technology. Both
Bluetooth 5 vs. 4.2 primarily focused on refining connectivity and experience
of the internet of Things (loT), thereby offering a unified flow of data. Between.
Bluetooth 5.0 vs 5.1, the Bluetooth 5.1 range is a bit higher. Its main areas of
improvements include:

- Slot Availability Mask (SAM)

« Extensions of LE Advertising

« 2 Mbit/s PHY for LE

« LE Channel Selection Algorithm #2

« Long-range LE Long

« Non-Connectable advertising high duty cycle

h) Bluetooth version 5.1

Bluetooth 5.1 was unconfined in 2019. When Bluetooth 5.0 vs. 5.1 are
compared, version 5.1 was the first to support the Mesh-based model
hierarchy. Its main improvements areas are;

« The angle of Departure (AoD) and Angle of Arrival (AcA)

« GATT Caching
« Periodic Advertising Sync Transfer
» Advertising Channel Index

i) Bluetooth Version 5.2

The latest Bluetooth version 5.2 was introduced by the Bluetooth SIG during
the CES 2020 which was held in January 2020. This version was introduced
into the market alongside the next generation of Bluetooth LE Audio. The



most significant change made between Bluetooth 5.1 vs. 5.2 was that version
5.2 has Isochronous Channels (ISOC). Isochronous Channels supports BLE
devices with Bluetooth 5.2 or later where it acts as the base during the
implementation of LE Audio. The other 3 features that come with Bluetooth
version 5.2 are;

« Isochronous Channeis (ISOC)
« Enhanced Attribute Protocol (EATT)
« LE Power Control (LEPC)

Bluetooth devices Ranges by class

Bluetooth devices have 3 classes that compromise 3

standard anticipated ranges. Class 1 devices have a range of 328 feet or 100
meters, transmitting at 100 mW. Class 2 devices have a range of 33 feet or 10
meters, transmitting at 2.5 mW, whereas the range of Class 3 devices is less -
than 10 meters transmitting at 1 mW.

These are the anticipated ranges, where they can radically decrease due to
an obstacle between the two devices, for instance, walls that weaken signals.
Therefore, the transmitter’s strength, the device’s proximity obstruction, and
the receiver’s sensitivity are the most common factors influencing the range of
Bluetooth devices.

Bluetooth mesh version Range in ft \ Speed in (Mbit/s) \
Class 1 100mW \ 100 meters \
Class 2 : 2.5mW \l 10 meters ‘ \‘
Class 2 TmW Less than 10 meters |

When New Bluetooth versions are used with compatible peripherals, they
come with improvements. Before the invention of Bluetooth 4.2 back in 2014,
the other major version of the standard, Bluetooth 4.0, was in 2011. On the
other hand, Bluetooth 5.0 is configured with far better improvements than
previous standards (Bluetooth 4.0 & 4.2). The specifications of Bluetooth 4.2
features are ratified. Hence it can be supported by everything ranging from



Features or
Specifications

Speed

Range

Power Requirement
Message Capacity

Robustness to
operate in a
congested
environment

Battery Life

Security Control

oo o s

Theoretical Data
Throughput

Reliability

Sa00ns The tabhla ‘ -
et L abie below will lughlight the typical basic

| TR SR 5 i, .
hat aitferentiate Bluetoot)

00T 5.0 and Bluetooth 4 2 versions.

Bluetooth 4.2

Bluetooth 4.2 speed is
lower, only supporting
about 1 Mbps

Bluetooth 4.2 range is

low, only supporting 10
meters indoors and 50
meters Qutdoors

High power requirement

Small message capacity

~ of about 31 bytes. Its

actual data payload gives
17 - 20 bytes

~ Its robustness to operate
. in congested environs is
- less

Short battery life

Less secure than

Bluetooth 5.0

It has a theoretical output

1

of 1 Mbps

Less reliable

Bluetooth 6.0

Higher speed supporting about 2
Mbps, twice the speed of the
Bluetooth 4.2 version

Bluetooth 5.0 range is high,
supporting 40 meters in indoor

-~ areas and 20 meters in outdoor

locations in Line Of Sight (LOS),

~ four times than Bluetooth 4.2
. version

Low power requirement

Large message capacity of about
255 bytes

Its robustness to work in
congested areas is more

Longer battery life
More secure than Bluetooth 4.2

It has a theoretical output of 2
Mbps and an overhead of about
1.6 Mbps

- Highly reliable




Features or :
Specifications | Bluetooth 4.2 5 Bluetooth 8.0

Less good digital life than Better digital life than Bluetooth

Digital Life v
- Bluetooth 4 0 vs 50 42
Support for o] - Bluetooth 4.2 do not ~
devices ~ support loT devices It supports loT devices

Due to its lower speed
and range, Beacons were
Bluetooth Beacon less popular. Their

message capacity is low,

at about 31 bytes

With increased speed and range
in Bluetooth 5.0 version,
Beacons become more popular

Can Bluetooth 4.0 connect to multiple devices?

'?’he Blu .mom version 4.0 specification has two modes of devices; dual-mode
;ewces and single-mode devices. All passive Bluetooth 4.0 devices can
‘mplement both or either of the ways. The classic model (BR/EDR) and Low

energy mode are the two Bluetooth version 4.0 modes.

To the question, A single-mode low-energy-only device cannot connect to ,
classic mode devices. A dual-mode Bluetooth version 4.0 device can connect
with several Bluetooth Low Energy (BLE) devices.

Difference Analysis on Bluetooth 4.0 vs. Bluetooth 4.1
vs. Bluetooth 4.2

New standards that add new features or more Hardware resources required

for running more complicated protocols and algorithms are issued by‘th‘e SIG
each year. Hence, without the latest software, it becomes tough to eliminate

old natural hardware. The main differences between the 3 versions are,

Bluetooth 4.0 vs. Bluetooth 4.1

1. Increased rate of data transfer

1.

The Bluetooth version 4.1 has a single packet data of 20 bytes, while }
Bluetooth 4.1 has a maximum transfer maximum of 23 bytes. This raises the



:;k\ (;: d:_eata iransﬂtﬁr by 15%. Modifying the transmission rate of 23 bytes when
the chip is supporting Bluetooth version 4.0 is irre ' -

h | : g Bluetooth version 4.0 is irrelevant as

or complies with an error. 1 fLdrops the packet

2 Master-slave coexistence

e

The Bluetooth version 4.2 has an updated link-layer topology that allows
concurrent master-slave coexistence and topology with master-to-multiple

slave connection
3. Supports the 32-Bit UUID

The broadcast packet carries a 32-Bit UUID. This UUID is not about the
attribute list that has the 16-bit and 128-bit. To obtain the full 128-bit UUID on
B}u'et_ooth version 4.1, you only need to broadcast the 32-Bit UUID mapping
as it increases the active broadcast data length in a broadcast packet.

Biuetooth 4.1 vs. Bluetooth 4.2

1. LE connection security

The AES-CCM encryption bases the specifications of pairi'ng encryption links
of Bluetooth versions 4.0 and 4.1, because Bluetooth 4.1 stocks the identical

key, some dangers, and vulnerabilities might be cracked. The Diffie-Hellman
Key Exchange algorithm encrypts the pairing link of Bluetooth version 4.2
wo keys; a private key and a public key. The

Every Bluetooth 4.2 device has t
ther party’s public key encrypts the encrypted file,

users’ private key and the o
while the receiver decrypts both the transmitting party’s private and public
keys. This effectively prevents the intermediary from key event cracking.

e Privacy protection
h device address with a unique

tial to some applications, for

Bluetooth continuously broadcasts a Bluetoot
s equipment as stated by

Bluetooth Mac address. The address is essen
instance, logistics tracking app which fixes logistic

Bluetooth device address.

3. Improved data transmission rate
cket data, Bluetooth version 4.1

gsion of single pa
ok ovides up to 255

When it comes to transmi '
hereas Bluetooth version 4.2 pr

supports up to 23 bytes, w ion
bytes, thereby improving the rate of data transmission.



Is Bluetooth 4.0 the same as BLE?

Bluetooth version 4.0 rebranding by the group controlling technology helped
individuals differentiate Bluetooth Smart and Bluetooth Low Energy. The
Bluetooth SIG stated that version 4.0 devices would be called Bluetooth Smart
Ready and Bluetooth Smart to distinguish the products featuring this
technology.

Bluetooth Smart will characterize a new class of Bluetooth 4.0 peripherals. It
features sensor-type devices such as pedometers and heart-rate monitors
specially made to collect unique data. Meanwhile, devices using dual-mode
radios referred to as Bluetooth Smart Ready can handle both the Bluetooth
4.2 BLE technology and classic Bluetooth capabilities, for instance,
connecting to a hands-free device or transferring files.

Why you should Update your Bluetooth to 5.2

Since the introduction of Bluetooth 5.0 in December 2016, the technology has
become more user-friendly and advanced. The Bluetooth SIG introduced into
the market a radical Bluetooth version 5.2 receiver known as Bluetooth LE
Audio on 7 January 2020. The version is modified with an LE Audio that
enables multiple devices to share data. However, it has a limit of two devices
where files can be transferred from a phone, tablet, or computer. Also, the LE
Audio gives a better audio experience to individuals with hearing problems.
Some of the technical specifications of the latest Bluetooth Version 5.1 vs.

5.2 are;

1. Enhanced Attribute Protocol (EATT)

combination of enhancements to the Generic Attribute profile and an
upgraded version of Attribute Protocol (ATT) lead to the birth of Enhanced
Attribute Protocol (EATT). This new protocol enables end-users to reduce
end-to-end latency with development in the sensitivity of applications.

2. Low Energy Power Control

Bluetooth 5.2 devices have an LE Power control that exercises an essential
part in improving transmission power when two devices are connected. They
can also enthusiastically demand transmission power changes to lower power

usage and trade-off the signal’s quality.



Some benefits of LE Power control are;

I. Less power consumption.

ii. It enhances the receiver signal dependability.

iii. Growth of existing and upcoming wireless devices

3. Low Energy Isochronous Channels

Improved quality of sound hearing aids has been made promising by the
introduction of Low Energy Isochronous Channels. The Isochronous Channels

have made broadcasting and connection of sound to multiple devices
possible. Also, multi-language audio systems have been developed due to

this technology.

(a) Low Energy Audio

LE Audio transmits sound data on low-energy spectrum devices. A new
compression algorithm is used to maintain the Bluetooth’s quality.

(b) LC3 — Low Complexity Communication Codec

LE Audio encompasses the new low robust and high-quality audio codec LC3.
With better audio high-quality and less power consumption, inventors now
have a colossal elasticity as they can design new wireless merchandise

easily.
(c) Hearing Aid Improvements

Many individuals have benefited from Bluetooth technology, where wireless
calling has made driving safer. Productivity has increased as people can take

calls while driving to the office or home.



BLE (Bluetooth Low Energy)

Introduction:
BLE (Bluetooth Low Energy) is wireless PAN technology designed and

maintained by Bluetooth Special Interest Group (SIG). There are various
versions of biuetooth. The version 4.2 and above is referred as BLE. The latest in
the series are v5.0 and v5.1. BLE specifications are intended to reduce power
consumption and cost of devices while maintaining coverage range. BLE is
known as "Bluetooth Smart" where as previous version is known as "bluetooth
classic".

* BLE is not backward compatible with BR/IEDR protocols.

* BLE uses 2.4 GHz ISM frequency band either in dual mode or single mode.
Dual mode supports both bluetooth classic and low energy peripherals.

* All BLE devices use the GATT profile (Generic Attribute Profile). The GATT
protocol provides series of commands for the client to discover information about
BLE server.

* The BLE protocol stack architecture consists of two parts viz. controller and
host. Both are interfaced using HCI (Host to Controller Interface).

* Any profiles and applications run on top of GAP & GATT protocol layers.

BLE Protocol Stack | BLE System
Architecture



- Generic Access Profils (0AP) “M“‘:g%} Protocol

. Log cal Link Control & Adaptation Protocol

>HOST

(L2CAP) |

Contro-

>Her

=

BLE (Bluetooth Low Energy) Protocol Stack

The figure-2 depicts BLE system architecture. Let us understand functions of
different layers of this BLE protocol stack.

* Physical Layer :

* The transmitter uses GFSK modulation and operates at unlicensed 2.4 GHz
frequency band.

* Using this PHY layer, BLE offers data rates of 1 Mbps (Bluetooth v4.2)/2 Mbps '
(Bluetooth v5.0).

* It uses frequency hopping transceiver.

* Two modulation schemes are specified to deliver 1 Msym/s and 2 Msym/s.

* Two PHY layer variants are specified viz. uncoded and coded.

* A Time Division Duplex (TDD) topology is employed in both of the PHY modes.

* Link Layer : This layer sits above the Physical layer. It is responsible for
advertising, scanning, and creating/maintaining connections. The role of BLE
devices changes in peer to peer (i.e. Unicast) or broadcast modes. The common.

roles are Advertiser/Scanner ( Initiator), Slave/Master or Broadcaster/Observer.



Link layer states are defined in the figure below.

| Scanming L
‘\ { /
A \.’-‘vynrhvmu zation |

#

¢
¥
-

i .'l ‘\“‘ / Y
Advertising |- =  Standby = = Intiating |
\ . . /
//

A

™,
N,
\

{ \
m  Connection |- A
\ BLE Link Layer
' States

The figure-1 depicts BLE device states >>. The device will be in any one of these
states which include Standby state, Advertising state, Scanning state, Initiating

state, Connection State and Synchronization state.

» HCI : It provides communication between controller and host through standard
interface types. This HCI layer can be implemented either using API or by
interfaces such as UART/SPI/USB. Standard HCI commands and events are

defined in the bluetooth specifications.

« L2CAP :This layer offers data encapsulation services to upper layers. This

allows logical end to end data communication.

« SMP :This security Manager layer provides methods for device pairing and key
distributions. It offers services to other protocol stack layers in order to securely

connect and exchange data between BLE devices.



* GAP : This layer directly interfaces with application layer and/or profiles on it. It
handles device discovery and connection related services for BLE device. It also

takes care of initiation of security features.

* GATT : This layer is service framework which specifies sub-procedures to use
ATT. Data communications between two BLE devices are handled through these
sub-procedures. The applications and/or profiles will use GATT directly.

« ATT : This layer allows BLE device to expose certain pieces of data or
attributes.

+ Application Layer:

* The BLE protocol stack layers interact with applications and profiles as desired.
Application interoperability in the Bluetooth system is accomplished by Bluetooth
profiles. |

* The profile defines the vertical interactions between the layers as well as the
peer-to-peer interactions of specific layers between devices.

* A profile composed of one or more services to address particular use case. A
service consists of characteristics or references to other services.

« Any profiles/applications run on top of GAP/GATT layers of BLE protocol stack.
It handles device discovery and connection related services for the BLE device. ‘



Introduction

PSoC 41x7-BLAxXX Family Bloc

Figure 1-1 \l\\l.\l\\.\\\\\\\\\l\\.\l]

k Diagram

CPU & Memory .
PSoC 41x7-BL T «
K
ey Cortex - SRAM ROM
B o 16 kB 8 kB
24 MHz
NVIC, IROMX ‘
Syslem Resources u\ ﬂ ~
[ Sieep Control_| m System Interconnect (Single Layer AHB)
| <<_0r<o Peripherals M w
=g Y [PCiK] Peripheral Interconnect (MMIO)
{_NViatches = i
! i T 1T 1L
e Programmable e
Controt >=m_00 2
hELs . =g m
£ z1 18] |2] |2
x ol lal |81 19
s it = M. s
© b 19 |o
o &
@
1%} ‘ ;
I i§il
SMX. CTBm | x4
—Hi— | 2x OpAmp —l Port Interface & Digital System Interconnect (DS))

/= o pRESS

i
‘\ s ¥ 1040

Bluetooth Low
Energy Subsystem

BLE Baseband ”

Peripheral
es] |

2.4 GHz
GFSK
Radio

e =

y Y h 4

“§0O: Antenna/Power/Cryslal

; High Speed /O :me
Yy

T

¢

L - 36x GPIOsS

10 Subsystem




EMBEDDED I TOMORROW ™

&= CYPRESS

®. bines programmable ana-
PSoC® 4 is a programmable embedded system controller with an ARM® Corte:‘ ;gd%zgw?u?c;lnm pef;"?egfds with a high-
log, programmable interconnect, user-programmable digital logic, aqd qommon y the PSoC 4 architecture which supports
performance ARM Cortex-M0 subsystem, The PSoC 4xxx-BL family is based on

Bluetooth. This is upward-compatible with larger members of PSoC 4.
PSoC 4 devices have these characteristics:

® High-performance, 32-bit single-cycle Cortex-M0 CPU core
m  BLE radio and subsystem

O On-chip BLE transceiver

0 Link layer controller compliant with Bluetooth 4.2
Fixed-function and configurable digital blocks
Programmable digital logic

High-performance analog system

Flexible and programmable interconnect

Capacitive touch sensing (CapSense®)

Low-power operating modes — Sleep, Deep-Sleep, Hibernate, and Stop modes
Direct memory access (DMA)

This document describes each functional block of the PSoC device in detail. This information will help designers to create
system-level designs.

11 Top Level Architecture

i j i i 1-2 shows the major components
Figure 1-1 shows the major components of the PSoC 41x7-BL4xx architecture and Figure C
ofgthe PSoC 42x7-BL4xx architecture. Figure 1-3 shows the major components of the PSoC 41x8-BL4x>_< architecture and
Figure 14 shows the major components of the PSoC 42x8-BL4xx architecture. Figure 1-5 shows the major components of
th; PSoC 41x8-BL5xx architecture and Figure 1-6 shows the same for PSoC 42x8-BL5xx architecture.

PSoC 41XX BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. *D 19



L e " v‘

Introduction

bl : T
. PSoC a1x7.81 '
T FLASH | |- BRAM
i 128KB | | 16k
Rond Acoplorilor i HRAM Gonlrollar ‘
i i R R T
i il Systom Ihldrctpnnuol (Slnnlo‘Luyor ARBY s BT
! Poﬁphemls
F i f ; ’.‘ ;E‘ﬂbim It 1"‘\' ».
ro%‘m'@g;? T Bluetooth Low
o] || 'Enorgy SUbsystem
BLE Baseband
Peripheral
! ' GFSK Modem
f 2400z |R]2 l
R 88|
~ Ra |
ot Inetta R N i
e i ‘/'
: O m 103 Antodna/Power/Crytal *
N
} #' o) suM
LA
pr ! ifh
'
\ /I W
i e ’ il W
7 ‘ / /'
a1
i
{ .
W “,; i
, i |
ah .:’7 / ! ) It

|



-

/™. ~YPRESS

‘ w“' E!‘BEODED N rcnanow N
'
Introduction

Figure 1-3, PSoC 41x8-BL4xx Family Block Diagram

} [CPU & Mormory
PSoC 41x8-BL WA
REALTA . [ 8pCir ]
200 b FLASH SRAM ROM
] B 8 kB
i 24 MHy 260'%8 uibe
—— ngll\§‘ B Read Accelorator &RAM Controfler |~ | 'ROM Controfier
SN IETOL
System Resoumeﬂ Jof g T ] I ii
s /
RS l l System (nterconinect (Single Layer AHB) | Y
[Peripherals i,[. - 7 7 X!
) [POIK . Peripheral Interconnect (MMIO) o |
: : ; ) : i !
s Thot. I i;Lf
___Clock | P Programmable |k S / Bldetootbow,
(,Ioc\t,xv lc)&%nm Aaibg < @ ~ Energy Subsystem
E, | 1l & ; 22| |& g 7
[ 8 &) el [ S| I& BLE Baseband :
s el Bl 2] =] |8 Peripheral f
Reset [ S |\m Rl 1KB SRAM
__Res = SAR ADC x| o] |8 & , |
‘ o 1 o8 ' ‘ A LS sactz 12121511
Test a1 % 4 GFSK ‘T i
o] P Redo (25171 |
[OFTAnaiog | || [=] [Tsmx CTB — LT L 2 !
LT 2l | i v2x0p[;nmp : r  Port Interface & Digital System Interconnect (DSY) . 7 ‘ ; ,
T ‘ ‘ ‘ ‘ o i //lw i 2 i07Amennaowericostt
H 7 SRR ‘

loSubsystem

PSoC 41XX_BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001

-927 *
22 38 Rev. *D



W CYPRESS

—

ENBEDOED 1N TOMORROW'

Figure 1.2, pgoc 4

2x7-BL4xx Family Block Diagram

SRAM ROM
16 kB 8 kB
SRAM Controllor ROM Controlior

Jib

G

__ System Interconnect (Single

Layer AHB)

L
=

1L

Introduction

Peripheral Interconnect (MMIO)

Programmable
_ Digital

B

- 4x TCPWM

CapSense

g
2
7}
3]
S
P
O
@
&

>

arator -

pare

2xLP Com

Port Interface & Digital System Interconnect (o))

]

1L

 Bluetooth Low
- Energy Subsystem 4

Peripheral

GFSK Modem

| 24 GHz
GFSK
Radio

24MHz XO
B2kHz XO

'oi:
3,

10: Antenna/Power/Crystal

A 4 A

v

10 Subsystem

i

C 41XX BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. *D
PSo | —

21



v‘”’

gﬁ DCMY..EB,E_“&S; Irtroduetion

Figure 14, PSoC 42x8-BLAxx Family Block Disgrarm

FLASH | SRAM
256 kB , 73
Flond fetatorsicn P ot
g T 7T
"~ System Interconnedt (Single Layer MIP)
37

PSoC 41XX_BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. “D



24

Introduction

PSoC 41 X8 &m

Inflator/MMio

‘CYPRESS

EMBEDDED 14 TUMUAROW”

Programmable
Analo

SAR ADC
(12-bit)

Power Modes

10 Subsystem .

1XX_ BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev, *D
PSoC 41XX_| - _ :



' PSo

Introduction
& CYPRESS

EMBEDDYO IN TOMORROW"

Figure 1-6. PSoC 42x8-BL5xx Family Block Diagram
CPU Subsystern
PSoC 42x8-BL5xx R0 K T m J

\ VR i -

32it ; P ! /

{ TAY ;“‘ " ™ inillator/MMIO
AHB-Lite MN\TI%%@X: Rund Acaolorator m - ;

P ] £

Systom Resources gl " ) ; ,

ystaim Resources I . Gystom Interconnect (Multl Layer AHB) /
g @/ W/ W
¢ 3] [PEK) | paripheral Interconnect (MMIO)'
X _ 5 i
f () 1 L -
l‘l: 1t ‘ L lg Q 1% Bluetooth Low
Bt " Programmable ' { Programmable | i Energy Subsystem
Clack Control . Analog ‘ Digital / J
Vi i I 10 \ ) {f A t )
lwlomDT 1K) | SAR ADG ! i LE Fasstaddi:

‘ N NG _"(12-blt)‘“ ' o uosi ] S ¢ peripheral
R e - 6 Y L )
UL bl ‘ AT ]ttt 4 GFSK Modem -
[CRRRREST ) W ! e 1 1 1 T

R \ RS R [ T ol
S ‘ ~ T S memsy R 24 GHz | R[]
[ Analog DFT__ . L] | SARMUX cTBm USSR _ " Radio  |% i

- An?k) o S S ) 2% OpAmp@ | PortInterface & Digital System Interconnect (DS1) 1 &9

C ;
5 QU R TR i L SRl {/0: Antenna/Power/Crystal
- S PR R i) SN N B O L R
TR S S S M pesvr 7 o RSB

[ Activersieep 1 | [ S~ ST - TRt BRI

0 e < |10 Subsystem L ; AR G

1.2 Features ; m Segment LCD direct drive

! Myt ot m Low-power operating modes: Sleep, Deep-Sleep, Hiber-
The PSoC 4xxx-BL family has these major components: nate, and Stop
m BLE radio and subsystem , G m Programming and debugging system through serial wire

m 32-bit Cortex-M0 CPU with sing_fé-cycle‘multiply, deliver- debug (SWD)
ing up to 43 DMIPS at 4§ MHz ‘ m Fully supported by PSoC Creator™ IDE tool

» Up to 256 KB flash and 32/KB SRAM

m Direct memory access (DMA) ,
Four independent center-aligned pulse-width modula- |
tors (PWMs) with complementary, dead-band program- 13.1 Processor

mable outputs ‘
s Twelve-bit SAR ADC (with a sampling rate of 1 Msps in The heart of the PSoC 4 is a 32-bit Cortex-M0 CPU core

PSoC 42xx-BL and 806 ksps in PSoC 41xx-BL) with running up to 48 MHz for PSoC 42xx-BL and 24 MHz for
hardware sequencing for multiple channels PSoC 41xx-BL. It is optimized for low-power operation with
four opamps that can be used for analog signal extensive glock gating. It uses 16-bit instructions and exe-

1.3  CPU System

m Upto
e oy ing and e comparator ::lgtes at sub;let of the Thumb-2 instruction set. This instruc-
n sete i i igrati
& hpmldve Jhisip hon se rt\a h‘es fully compatible binary upward migration of
‘ e to higher performance processors such as Cortex
Two serial communication blocks (SCB) that can work M3 and M4,

as SPI, UART, J?C, and local interconnect network (LIN)
slave serial communication channels

Up to four programmable loglc blocks, known as univer-
sal digital blocks (UDBs)

“m CapSense

The CPU has a hardware multiplier that provides a 32-bit
result in one cycle.

C 41XX BLE/4zxx;BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. *D 2
0 , ‘ : .



Introduction

13.2 Interrupt Controller

I(r)]r?t rglll'-:: (sr::\t;féjterqhinglzudes a nested vectored interrupt
. wi interrupt inputs and a wakeu
lfl:(t)errupt controller (WIC), which can wake the processoﬁ'
from Deep-Sleep mode. The Cortex-M0O CPU of PSoC 4
lmpl.ements~ a non-maskable interrupt (NMI) input, which can
be tied to digital routing for general-purpose use.

1.3:8 Direct Memory Access

The 1'31MA er‘wgi‘ne is capable of independent data transfers
anywhere within the memory map (perlpheral—to-peipherm

and peripheral-to/from-memory) with a
descriptor chain. ) programmable

Note: DMA is available only in PSoC 41x8-BL5
42x8-BL5xx families. PrEndPees

14 Memory

The PSoC 4 memory subsystem consists of flash and
SRAM. A supervisory ROM, containing boot and configura-
tion routines, is also present.

141 Flash

The PSoC 4 has a flash module, with a flash accelerator
tightly coupled to the CPU, to.improve average access times
from the flash block. The flash accelerator delivers
85 percent of single-cycle SRAM access performance on an
average.

14.2 SRAM

The PSoC 4 provides SRAM, which is retained during Hiber-
nate mode.

1.5

1.5.1 Clocking System

The clocking system for the PSoC 4 device consists of the
internal main oscillator (IMO) and internal low-speed oscilla-
tor (ILO) as internal clocks and has provision for an external
clock, external crystal oscillator (ECO), and watch crystal
oscillator (WCO).

The IMO with an accuracy of £2 percent is the primary
source of internal clocking in the device. Multiple clock deriv-
atives are generated from the main clock frequency to meet
various application needs.

System-Wide Resources

The ILO is a low-power, less accurate oscillator and is used
as a source for LFCLK, to generate clocks for peripheral
operation in Deep-Sleep mode. Its clock frequency is 32 kHz
with £60 percent accuracy.

GEPOW

& CYPRESS

EupEOED N oM

Hz to 48 MHz can

ing from 0 M ;
An external clock source ranging for the functional

be used to generate the clock derivatives
blocks Instead of the IMO.

The ECO is used to generate a highly accurate 24-MHz
clock without any external components. It is primarily used

to clock the BLE subsystem, which contains the Link Layer
engine, the digital PHY modem, and the RF transceiver. The
high-accuracy ECO clock can also be used as a clock
source for the PSoC 4 device.

The WCO is used as a source for LFCLK. WC_O‘is used to
accurately maintain the time interval of advertising events

and connection events during Deep Sleep mode. Similgr to
the ILO, WCO s also available in all modes, except Hiber-

nate and Stop modes.

1D Power System

The PSoC 4 operates with a single external supply in the
range 1.71Vto 5.5 V.

PSoC 4 has four low-power modes — Sleep, Deep-Sleep,
Hibernate, and Stop — in addition to the default Active mode.
In Active mode, the CPU runs with all the logic powered. In
Sleep mode, the CPU is powered off with all other peripher-
als functional. In Deep-Sleep mode, the CPU, SRAM, and
high-speed logic are in retention; the main system clock is
OFF while the low-frequency clock is ON and the low-fre-
quency peripherals are in operation. In Hibernate mode,
even the low-frequency clock is OFF and low-frequency
peripherals stop operating.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

15.3 GPIO

Every GPIO in PSoC 4 has the foIIowing characteristics:
Eight drive strength modes

Individual control of input and output disables

Hold mode for latching previous state

Selectable slew rates :

Interrupt generation — edgé triggered

CapSense and LCD driye’support

PSoC 4 also has two o(/er—voltage tolerant ports , which
enable 12C Fast Mode power down specification compliance

and haye the ability to connect to higher voltage buses while
operating at lower Vpp.
/',

The pins are org':!(\ized in a port that is 8-bit wide. A high-
speed I/O matrix is used to multiplex between various sig-
nals that may connect to an I/O pin. Pin locations for fixed-
function peri?ﬁerals are also fixed.

/

26 PSoC 41XX_BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. *D



= CYPRESS

e ENBEDOYY 1y ToMananw

1.6 Bluetooth Low-Energy

Subsystem

PSoC 4xxx Bluetooth Low-
grates the RE transceiver, dj
controller,

1.6.1 RF Transceiver
The RF transceiver

Energy (BLE) subsystem Inte-
gital PHY modem, and link layer

' contains an integrated balun which
_ . , pro-
vides a single-ended RF port pin to drive a 50-ohm antenna

Via a matchingffiltering network. In the recelve direction, this
. converts the RF signal from the antentla to a 1-MHz
lr?terfn.eduat‘e frequency and digitizes the analog signal to 10-
bit digital signal. In the transmit direction, this block takes 1
Mbps GFSK modulated from digital PHY, up-converts it to
radio frequency, and transmit it to air through antenna.

1.6.2 Digital PHY Modem

In the transmit direction, this sub-block takes the 1-Mbps
sgnal data from the link layer controller, generates GFSK
direct modulated data, and sends it to the BLE analog sec-

tion. On the receive side, it takes the 1-MHz IF ADC data -

from the BLE analog section and uses digital demodulator to
generate the 1-Mbps serial data.

1.6.3

The link layer controller implements all timing critical func-
tions specified in the Bluetooth Low-Energy Link Layer
specifications (packet framing/de-framing, CRC generation/
checking, encryption/decryption, state machines, and
packet transmission); it also provides interface to the digital
PHY. The communication between link layer hardware and
firmware is done through interrupt, FIFO, and registers.

1.7 Programmable Digital

The PSoC 42xx-BL has up to four UDBs. Each UDB con-
tains structured data-path logic and uncommitted PLF) logic
with fiexible interconnect. The UDB array : provides a
switched routing fabric called the digital signal lnterponnect
(DS1). The DSI allows routing of signals from peripherals
and ports to and within the UDBs.

i - logic or

{ amrays in PSoC 42xx-BL enaple gustom

;:‘:ﬂ;gg :merlss!PWMs and communication interfaces such
as FC, SPI, 125, and UART,

Note PSoC 41xx-8BL does not have UDBs.

Fixed-Function Digital

Link Layer Controller

1.8

1.8.1

The Timer/Counter/PWM block /
ters with !-programmable per

Timer/Counter/PWM Block

consists of four 16-bit coun-
od length. The functionalty

1.91

Introduction

of these counters can be synchronized. Each blqck has a
capture reglister, period register, and compare register. The
block supports complementary, dead-band programmable
outputs. It also has a kill input to force outputs to a predeter-
mined state. Other features of the block include center-
aligned PWM, clock prescaling, pseudo randor PWM, and
quadrature decoding.

1.8.2

The device has two SCBs. Each SCB can implement a
serial communication interface as I2C, UART, local intercon-
nect network (LIN) slave, or SPI.

The features of each SCB include:

m Standard I12C multi-master and slave function

m Standard SPI master and slave function with Motorola,
Texas Instruments, and National (MicroWire) mode

m Standard UART transmitter and receiver function with
SmartCard reader (ISO7816), IrDA protocol, and LIN

m  Standard LIN slave with LIN v1.3 and LIN v2.1/2.2 spec-
ification compliance

m  EZ function mode support for SPI and 12C with 32-byte
buffer

1.9

Serial Communication Blocks

Analog System

SAR ADC

PSoC 42xx-BL has a configurable 12-bit 1-Msps SAR ADC
and PSoC 41xx-BL has a similar 12-bit SAR ADC with
806 ksps. The ADC provides three internal voltage refer-
ences (Vppa. Vppa/2, and VRgeg) and an external reference
through a GPIO pin. The SAR hardware sequencer is avail-
able, which scans multiple channels without CPU interven-
tion.

1.9.2

The Continuous Time Block mini (CTBm) provides continu-
ous time functionality at the entry and exit points of the ana-
log subsystem. The CTBm has two highly configurable and
high-performance opamps with a switch routing matrix. The
opamps can also work in comparator mode. PSoC 42xx-BL
has two such CTBm blocks, while PSoC 41xx-BL has one
CTBm block.

The block allows open-loop opamp, linear buffer, and com-
parator functions to be performed without external compo-
nents. PGAs, voltage buffers, filters, and trans-impedance
amplifiers can be realized with external components.CTBm
block can work in Active, Sleep, and Deep-Sleep modes.

1.9.3 Low-Power Comparators

The PSoC 4xxx-BL has a pair of low-power comparators,
which can operate in all device power modes. This function-
ality allows the CPU and other system blocks to be disabled

Continuous Time Block mini

XX BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. *D . 27
PSoC 41XX_| el !



Introduction

while retaining the ability

to monitor
during low-power modes ! ext

* WO input vot
hternal signa

ernal voltage levels
ages can both come
| through the AMUX-

nternal LCD voltages.
CapSense
PSoC 4 devices have the CapSense feature, which allows

you to use the capacitive properties of your fingers to toggle

1.12  Device Feature Summary
Table 1-1 shows the PSoC 41xx-

1.10.2

Table 1-1. PSoC 41xx-BL/42xx-BL Device Summary

BL/42xx-BL device summary.

&= CYPRESS

EMBEODED IN TOMORROW™

buttons and sliders, CapSense functionality is suppoﬂed on
all GPIO pins in PSoC 4 through a CapSense Sigma-Delta

(CSD) block. The CSD also provides waterproofing capabil- .
ity.

1.10.2.1  IDACs and Comparator

The CapSense block h
a 12-V reference, whic
CapSense is not used

111 Program and Debug

PSoC 4 devices Support programming and debugging fea-
tures of the device via the on-chip SWD interface. The PSoC

Creator IDE provides fully integrated programming and

debugging support. The SWD interface is also fully compati-

ble with industry standard third-party tools.

as two IDACs and a comparator with
h can be used for general purposes, if

iy : _ Feature _PSoC4txx-BL | = PSoC42xx-BL
Maximum CPU Frequency 24 MHz 48 MHz i
PSoC 41x7-BL: 128 KB | | PSoC 42x7-BL: 128 KB
Flagh PSoC 41x8-BL: 256 KB | PSoC 42x8-BL: 256 KB
PSoC 41x7-BL: 16 KB
SRAM

PSoC 42x7-BL: 16 KB

PSoC 41x8-BL: 32 KB PSoC 42x8-BL: 32 KB
GPIOs (maximum) 38 38

CapSense Available Available

LCD Driver Available Available

4,
Timer, Counter, PWM (TCPWM) 4 !
Serial Communication Block (SCB) 2 :
ilabl

Universal Digital Block (UDB) :ot Available :

IDAC (part of CapSense) 2 .

Opamp : :

Comparey 12-bit SAR, 806 ksps 12-bit SAR, 1 Msps
ARe Available Available
Bluetooth

28

i i No. 001-92738 Rev. *D
ly PSoC 4 BLE Architecture TRM, Document
BLE/42XX_BLE Fami
PSoC 41XX_| ;



4. Cortex-MO CPU

&= CYPRESS

o EMBEDDED 1M TOMORROW ™

The PSoC® 4 ARM Cortex-M0 core is a 32-bit CPU optimized for low-power operation. it has an efficient three-jstage plpelvze.
a fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The Cortex-MO also features a single-cycle uzc;
bit multiply instruction and low-latency interrupt handiing. Other subsystems tightly linked to the CPU core include a neste
vectored interrupt controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0 processor. For more details, see the ARM Cortex-MO user guide or technical
reference manual, both available at www.arm.com.

4.1 Features

The PSoC 4 Cortex-MO0 has the following features:

Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors
Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power
Maximum CPU clock frequency of 24 MHz in PSoC41xx_BL and 48 MHz in PSoC 42xx_BL.
Supports the Thumb instruction set for improved code density, ensuring efficient use of memory
NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response
Extensive debug support including:

o SWD port

o Breakpoints

o Watchpoints

. *D 37
C 4 BLE Architecture TRM, Document No. 001-92738 Rev.

42XX_BLE Family PSo :

PSoC 41XX_BLE/MAZAA_



4 B R R aeREW
Cortex-M0 CPU " EHAEODED 1N SEHORREW

4.2 Block Diagram

Figure 4- .
igure 4-1. PSoC 4 CPY Subsystem Block Diagram

CPU Subsystem ‘*? Illl" ii

ARM Cortex-M0 CPU

DAP

| System Interconnect |

=5

\ & ‘ r ¥,
| ! || AHB Bridge

W

CPU & Memory
Subsystem

4.3 How It Works

The Cortex-MO0 is a 32-bit processor with a 32-bit daté path, 32-‘bit‘ registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

The processor supports two operating modes (see ‘fdpenating Modes” on page 40). It has a single-cycle 32-bit multipiication
instruction.

4.4  Address Map

The ARM Coriex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 4-1. Note that code can be executed

from the code and SRAM regions.

Table 4-1. Cortex-M0 Address Map
" Address Range Name sl i Use
gk Program code region. You can also place data here. Includes the exception vector table,
0x00000000 - 0 IPPFFFFF e which starts at address0.
—— _SR;J—VI~ Data region. You can also execute code from this region,

- _________,._—_.__———-—"""_‘
020000000 - 0x3FFFF FFF__|SRAM
009 03T

All peripheral registers. You cannot execute code from this region.

OXA0000000 - OxSFFFFFFF _|Peripheral __| ]
p—— s Not used.

0000 - QKOFFFFFFF 1 — S ~
0"6000)0?; OXEQOFFFFF | PPB Peripheral rogisters within the CPU core.
ox00008 e T hevice | PSoC 4 implementation-spacific. 1

0xE0100000 - OxFFFFFFFF
0x£0100000 - 0

pSoC 41 XX_BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. *D

38



e

-

W CYPRESS

W EMBEDOED ) TOMORAQY

4.5

® R13
regis

Table 4-2. Cortex-

- Stac
gister

B R14 —Link register.
" R15 - Program cou

icates th

purpose re
structions.

Registers

The Cortex-M0 has 16 32

® ROtoR12- General-
by a subset of the in

Cortex-M0 CPU

-bit registers, as Table 4-2 shows:
gisters. RO to R7 can be accessed by all instructions; the other registers can be accessed

ind"( pointer (SP), There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
€ stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

Stores the return program counter during function calls.
nter. This register can be written to control program flow.

MO Registers
N
= s Type? Reset Value Description
R12 - 9
Rw Undefined | R0-R12 are 32-bit general-purpose registers for data operations. ,
The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
MSP (R13) indicates which stack pointer to use:
PSP (R13) Rw [0x00000000] | O = Main stack pointer (MSP). This is the reset value.
1 = Process stack pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000.
LR (R14) RW Undefined The link register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions.
The program counter (PC) is register R15. It contains the current program address. On
PC (R15) RW [0x00000004] | reset, the processor loads the PC with the value from address 0x00000004. Bit[0] of the
value is loaded into the EPSR T-bit at reset and must be 1.
The program status register (PSR) combines:
Applicati i SR).
PSR RW Undefined pplication Program Status Register (APSR)
Execution Program Status Register (EPSR).
Interrupt Program Status Register (IPSR).
APSR RW Undefined The APSR contains the current state of the condition flags from previous instruction
executions.
EPSR RO [0x00000004].0 | On reset, EPSR is loaded with the value bit[0] of the register [0x00000004].
IPSR RO 0 The IPSR contains the exception number of the current ISR.
PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority. -
CONTROL RW 0 The CONTROL register controls the stack used when the processor is in thread mode.

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Table 4-3 shows how the PSR bits are assigned.

Table 4-3. Cortex-MO PSR Bit Assignments

Bit |PSRRegister Name Usage
31 APSR N Negative flag

30 APSR z Zero flag

29 APSR Cc Carry or borrow flag

28 APSR Vv Overflow flag

PSoC 41

XX_BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. *D

39




&% CYPRESS

" JORROW
EMBELOED IN TOM
o

Sign
Bit ST GNments

27 -25
\ Usage
Reserveq

Thumb‘state bit. Must always be 1. Altempting to execute instructions when the T bitis 0
esults in g HardFauylt exception.
—— 8

Reserved

Exception number of current ISR:
0 = thread mode
1= reserved
2=NM|

3 = HardFault

- 4-10=re

5-0 IPSR N/A 1= svc:a::ewed
12, 13 = reserved
14 = Pendsv

15 = SysTick

16 = IRQO

S 47 = |RQ31

Use the MSR or CPS instruction to set or clear bit 0 of the PRIMASK register. If the bit is 0, exceptions are enabled. If the bit
is 1, all exceptions with col

nfigurable priority, that is, all exceptions except HardFault, NMI, and Reset, are disabled. See the

Interrupts chapter on page 57 for a list of exceptions.

4.6 Operating Modes

The Cortex-M0 processor supports two operating modes:

®  Thread Mode — used by all normal applications. In this mode, the MSP or PSP can be used. The CONTROL register bit 1
determines which stack pointer is used:

O 0=MSP is the current stack pointer
0 1=PSP s the current stack pointer
®m Handler Mode — used to execute exception handlers. The MSP is always used.

In thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the stack

pointer, use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute
using the new stack pointer.

In handler mode, explicit writes to the CONTROL register are ignored, because the MSP is always used. The exception entry
and return mechanisms automatically update the CONTROL register.

4.7 Instruction Set

The Cortex-MO implements a version of the Thumb instruction set, as Table 44 shows. For details, see the Cortex-M0
Generic User Guide.

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on the
operands and often store the result in a destination register. Many instructions are unable to use, or have restrictions on
using, the PC or SP for the operands or destination register.

PSoC 41XX_BLE/42XX_BLE Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. "D
40




A~
W CYPRESS

EMBEDOE " .
Din TOMORROV coneX‘MO CPU
Ta
ble 44, Thump Instruction Set Table 4-4. Thumb Instruction Set
Mnemonic Mnemonic ipti
—— Bi
ADCS . Brief Description SEV Send ¢ iiBepcripton
dd with carry end aven
ADD({S)? Add ST™ Store multiple registers, increment after
ADR PC-relat STR Store register a5 word
ANDS = ;;Zat::;ddress lo register STRB Store register s byte
e
ASRS ; - STRH Store register as half-word
vy Arithmetic shift right SUB(SY? Subtract
cC
e Branch {conditionally} SVC . - P 13
S Bit clear ’uper‘nsor =
BKPT Breakpoint SXTB Sign extend by:fe -
SXTH Sign extend half-wor
o ~ronch with link TST ng"] | AND-based test
ca

BLX Branch indirect with link = Zog’ T !

ero e; a i
BX Branch indirect
CMN UXTH Zero extend a half-word

Compare negative
CMP WFE Wait for event
Compare
WFI Wait for interrupt

pSoC 41xx_BLE/42XX_BLE

CPSID Change processor state, disable interrupts
CrSIE Change processor state, enable interrupts
DMB Data memory barrier

DSB Data synchronization barrier

EORS Exclusive OR

ISB Instruction synchronization barrier

LDM | Load multiple registers, increment after
LDR Load register from PC-relative address
LDRB Load register with word

LDRH Load register with half-word

LDRSB Load register with signed byte

LDRSH Load register with signed half-word

LSLS Logical shift left

LSRS Logical shift right

MOV{S})® Move

MRS Move to general register from special register
MSR Move to special register from general register
MULS Multiply, 32-bit result

MVNS Bit wise NOT

NOP No operation
ORRS | Logical OR
—;gp__—/ Pop registers from stack
—;L-J—S_r/ Push registers onto stack
_R—ET/ Byte-reverse word
E—E-\;l?/ Byte-reverse packed half-words

RORS Rotate right
@ Reverse subtract

SBCS Subtract with carry

Family PSoC 4 BLE Architecture TRM, Document No. 001-92738 Rev. D

a. The 'S’ qualifier causes the ADD, SUB, or MOV instructions i update
APSR condition flags.

B

471 Address Alignment

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half-word-aligned address is used for a half-word
access. Byte accesses are always aligned.

No support is provided for unaligned accesses on the Cor-
tex-MO processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.7.2 Memory Endianness

The PSoC 4 Cortex-MO uses the little-endian format, where
the least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the high-

est address.

4.8 Systick Timer

The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reloac
register with 24 bits available to use as a countdown value
The Systick timer uses the Cortex-M0 internal clock as 3

source.

4.9 Debug

PSoC 4 contains a debug interface based on SWD; it fea-
tures four breakpoint (address) comparators and two watch-

point (data) comparators.




IOT UINIT-4

DATA ACQUIRING AND STORAGE:

Following subsections describe devices data, and steps in acquiring and storing data for
an application, service or business process.

Data Generation:

@®© Data generates at devices that later on, transfers to the Internet through a gateway.
Data generates as follows:

@®© e Passive devices data: Data generate at the device or system, following the result of
interactions. A passive device does not have its own power source. An external source
helps such a device to generate and send data. Examples are an RFID (Example 2.2) or
an ATM debit card (Example 2.3). The device may or may not have an associated
microcontroller, memory and transceiver. A contactless card is an example of the
former and a label or barcode is the example of the latter.

@ Active devices data: Data generates at the device or system or following the result of
interactions. An active device has its own power source. Examples are active RFID,
streetlight sensor (Example 1.2) or wireless sensor node. An active device also has an
associated microcontroller, memory and transceiver.

® Event data: A device can generate data on an event only once. For example, on
detection of the traffic or on dark ambient conditions, which signals the event. The
event on darkness communicates a need for lighting up a group of streetlights (Example
1.2). A system consisting of security cameras can generate data on an event of security
breach or on detection of an intrusion. A waste container with associate circuit can
generate data in the event of getting it filled up 90% or above. The components and
devices in an automobile generate data of their performance and functioning. For
example, on wearing out of a brake lining, a play in steering wheel and reduced air-
conditioning is felt. The data communicates to the Internet. The communication takes
place as and when the automobile reaches near a Wi-Fi access point.

@®© Device real-time data: An ATM generates data and communicates it to the server
instantaneously through the Internet. This initiates and enables Online Transactions
Processing (OLTP) in real time.



@® Event-driven device data: A device data can generate on an event only once. Examples
are: (i) a device receives command from Controller or Monitor, and then performs
action(s) using an actuator. When the action completes, then the device sends an
acknowledgement; (ii) When an application seeks the status of a device, then the device
communicates the status.

Data Acquisition:

Data acquisition means acquiring data from loT or M2M devices. The data communicates after the
interactions with a data acquisition system (application). The application interacts and communicates
with a number of devices for acquiring the needed data. The devices send data on demand or at
programmed intervals. Data of devices communicate using the network, transport and security layers
(Figure 2.1). An application can configure the devices for the data when devices have configuration
capability. For example, the system can configure devices to send data at defined periodic intervals.
Each device configuration controls the frequency of data generation. For example, system can configure
an umbrella device to acquire weather data from the Internet weather service, once each working day in
a week (Example 1.1). An ACVM can be configured to communicate the sales data of machine and other
information, every hour. The ACVM system can be configured to communicate instantaneously in event
of fault or in case requirement of a specific chocolate flavour needs the Fill service

® Application can configure sending of data after filtering or enriching at the gateway at the data-
adaptation layer. The gateway in-between application and the devices can provision for one or
more of the following functions—transcoding, data management and device management. Data
management may be provisioning of the privacy and security, and data integration, compaction
and fusion (Section 2.3).

® Device-management software provisions for device ID or address, activation, configuring
(managing device parameters and settings), registering, deregistering, attaching, and detaching
(Section 2.3.2). Example 5.2 gives the process of acquiring data from the embedded component
devices in the automobiles for Automotive Components and Predictive Automotive
Maintenance System (ACPAMS) application.

@ Data Validation:

@® Data acquired from the devices does not mean that data are correct, meaningful or consistent.
Data consistency means within expected range data or as per pattern or data not corrupted
during transmission. Therefore, data needs validation checks. Data validation software do the
validation checks on the acquired data. Validation software applies logic, rules and semantic
annotations. The applications or services depend on valid data. Then only the analytics,
predictions, prescriptions, diagnosis and decisions can be acceptable

@®© Large magnitude of data is acquired from a large number of devices, especially, from machines
in industrial plants or embedded components data from large number of automobiles or health



devices in ICUs or wireless sensor networks, and so on. Validation software, therefore,
consumes significant resources. An appropriate strategy needs to be adopted. For example, the
adopted strategy may be filtering out the invalid data at the gateway or at device itself or
controlling the frequency of acquiring or cyclically scheduling the set of devices in industrial
systems. Data enriches, aggregates, fuses or compacts at the adaptation layer.

® Data Categorisation for Storage:

@® Data from large number of devices and sources categorises into a fourth category called
Big data. Data is stored in databases at a server or in a data warehouse or on a Cloud as
Big data.

® Assembly Software for the Events A device can generate events. For example, a sensor
can generate an event when temperature reaches a preset value or falls below a
threshold. A pressure sensor in a boiler generates an event when pressure exceeds a
critical value which warrants attention.

@® Each event can be assigned an ID. A logic value sets or resets for an event state. Logic 1
refers to an event generated but not yet acted upon. Logic O refers to an event generated
and acted upon or not yet generated. A software component in applications can assemble
the events (logic value, event ID and device ID) and can also add Date time stamp. Events
from loTs and logic-flows assemble using software.

® Data Store:

® A data store is a data repository of a set of objects which integrate into the store. Features
of data store are: ® Objects in a data-store are modeled using Classes which are defined by
the database schemas. ® A data store is a general concept. It includes data repositories such
as database, relational database, flat file, spreadsheet, mail server, web server, directory
services and VMware e A data store may be distributed over multiple nodes. Apache
Cassandra is an example of distributed data store.

® A data store may consist of multiple schemas or may consist of data in only one scheme.
Example of only one scheme data store is a relational database. Repository in English means
a group, which can be related upon to look for required things, for special information or
knowledge

® For example, a repository of paintings of artists. A database is a repository of data which
can be relied upon for reporting, analytics, process, knowledge discovery and intelligence.



®

A flat file is another repository. Flat file means a file in which the records have no structural
interrelationship (Section 5.3). Section 5.5.1 explains the spreadsheet concept. VMware
uses data store to refer to a file that stores a virtual machine

@® Data Centre Management:

®

®

A data centre is a facility which has multiple banks of computers, servers, large memory
systems, high speed network and Internet connectivity. The centre provides data security
and protection using advanced tools, full data backups along with data recovery, redundant
data communication connections and full system power as well as electricity supply
backups.

Large industrial units, banks, railways, airlines and units for whom data are the critical
components use the services of data centres. Data centres also possess a dust free, heating,
ventilation and air conditioning (HVAC), cooling, humidification and dehumidification
equipment, pressurisation system with a physically highly secure environment.

The manager of data centre is responsible for all technical and IT issues, operations of
computers and servers, data entries, data security, data quality control, network quality
control and the management of the services and applications used for data processing

@® Server Management:

®

© ®© ®©® ® ©® @

Server management means managing services, setup and maintenance of systems of all
types associated with the server.

A server needs to serve around the clock. Server management includes managing the
following:

® Short reaction times when the system or network is down

e High security standards by routinely performing system maintenance and updation
® Periodic system updates for state-of-the art setups ® Optimised performance

e Monitoring of all critical services, with SMS and email notifications

® Security of systems and protection

e Maintaining confidentiality and privacy of data



@ e High degree of security and integrity and effective protection of data, files and
databases at the organisation

@ [ Protection of customer data or enterprise internal documents by attackers which

includes spam mails, unauthorised use of the access to the server, viruses, malwares and
worms

® e Strict documentation and audit of all activities

@® Spatial Storage:

@® Consider goods with RFID tags. When goods move from one place to another, the IDs of
goods as well as locations are needed in tracking or inventory control applications. Spatial
storage is storage as spatial database which is optimised to store and later on receives
gueries from the applications. Suppose a digital map is required for parking slots in a city.
Spatial data refers to data which represents objects defined in a geometric space. Points,
lines and polygons are common geometric objects which can be represented in spatial
databases. Spatial database can also represent database for 3D objects, topological
coverage, linear networks, triangular irregular networks and other complex structures.
Additional functionality in spatial databases enables efficient processing

@ Internet communication by RFIDs, ATMs, vehicles, ambulances, traffic lights, streetlights,
waste containers are examples of where spatial database are used.

@®© Spatial database functions optimally for spatial queries. A spatial database can perform
typical SQL queries, such as select statements and performs a wide variety of spatial
operations. Spatial database has the following features:

® e Can perform geometry constructors. For example, creating new geometries
e Can define a shape using the vertices (points or nodes)

e Can perform observer functions using queries which replies specific spatial information
such as location of the centre of a geometric object Can perform spatial measurements
which mean computing distance between geometries, lengths of lines, areas of polygons
and other parameters

® Can change the existing features to new ones using spatial functions and can predicate
spatial relationships between geometries using true or false type queries



@® Can perform spatial measurements which mean computing distance between geometries,
lengths of lines, areas of polygons and other parameters

@ e Can change the existing features to new ones using spatial functions and can predicate
spatial relationships between geometries using true or false type queries

Cloud Computing Features and Advantages:

@® Essential features of cloud storage and computing are:

®© e On demand self-service to users for the provision of storage, computing servers,
software delivery and server time

® e Resource pooling in multi-tenant model

®

e Broad network accessibility in virtualised environment to heterogeneous users,
clients, systems and devices

@® e Elasticity

®© e Massive scale availability
@® e Scalability

®© e Maintainability

®© e Homogeneity

e Virtualisation

® Cloud Computing Concerns:

Concerns in usage of cloud computing are:

e Requirement of a constant high-speed Internet connection
Limitations of the services available

® Possible data loss

e Non delivery as per defined SLA specified performance

e Different APIs and protocols used at different clouds

© © ® ©®©® ® ©® ©

® Security in multi-tenant environment needs high trust and low risks



@© e Loss of users’ control

Cloud Deployment Models:

@ Following are the four cloud deployment models: 1. Public cloud: This model is
provisioned by educational institutions, industries, government institutions or
businesses or enterprises and is open for public use.

@® 2. Private cloud: This model is exclusive for use by institutions, industries, businesses or
enterprises and is meant for private use in the organisation by the employees and
associated users only.

@ 3. Community cloud: This model is exclusive for use by a community formed by
institutions, industries, businesses or enterprises, and for use within the community
organisation, employees and associated users. The community specifies security and
compliance considerations

@ 4. Hybrid cloud: A set of two or more distinct clouds (public, private or community) with
distinct data stores and applications that bind between them to deploy the proprietary
or standard technology.

@ Cloud platform architecture is a virtualised network architecture consisting of a cluster
of connected servers over the data centres and Service Level Agreements (SLAs)
between them.

@ A cloud platform controls and manages resources, and dynamically provisions the
networks, servers and storage. Cloud platform applications and network services are
utility, grid and distributed services. Examples of cloud platforms are Amazon EC2,
Microsoft Azure, Google App Engine, Xively, Nimbits, AWS loT, CISCO loT, 10x and Fog,
IBM loT Foundation, TCS Connected Universe Platform.

EVERYTHING AS A SERVICE AND CLOUD SERVICE MODELS:

@® Cloud connects the devices, data, applications, services, persons and business. Cloud
services can be considered as distribution service—a service for linking the resources
(computing functions, data store, processing functions, networks, servers and
applications) and for provision of coordinating between the resources.

® Figure 6.2 shows four cloud service models and examples. Cloud computing can be
considered by a simple equation: Cloud Computing = Saa$S + Paas + laaS + Daas$ ... 6.2



® SaaS means Software as a Service. The software is made available to an application or
service on demand. SaaS is a service model where the applications or services deploy
and host at the cloud, and are made available through the Internet on demand by the
service user. The software control, maintenance, updation to new version and

infrastructure, platform and resource requirements are the responsibilities of the cloud
service provider.

@® PaaS means Platform as a Service. The platform is made available to a developer of an
application on demand. PaaS is a service model where the applications and services
develop and execute using the platform (for computing, data store and distribution
services) which is made available through the Internet on demand for the developer of
the applications. The platform, network, resources, maintenance, updation and security
as per the developers’ requirements are the responsibilities of the cloud service
provider.

@ aaS means Infrastructure as a Service. The infrastructure (data stores, servers, data
centres and network) is made available to a user or developer of application on
demand. Developer

Google App Engine,
MS Azure, Xively,

Mimbits, AWS loT,
IBM IoT Foundation,
Cisco loT, I0x and

Fog, TCS CUP

Amazon Web Services and
Virtual Servers, GoGrid Virtual
Servers, EC2, Cloud.com Open

7 Source laaS, Cisco IaaS

Tata
Communications,
GoGrid virtual
servers, Amazon
Virtual Servers, EC2

SW
Software
as a Service SW
W

W

Google Docs, Office
365, MS Windows Live,
MS Exchange Labs.,
Salesforce.com, C
extensible CRM )

Figure 6.2 Paa5, 5aa5, laa5 and Daas Cloud Service maodel

[DW—Data Warehouses; DE—Databases; EC2—Elastic Computing Cloud; SW—5oftware;
M5—Microsoft; CRM—Customer Customer Relations Management]

installs the OS image, data store and application and controls them at the infrastructure.
laaS is a service model where the applications develop or use the infrastructure which is



made available through the Internet on demand on rent (pay as per use in multi-tenancy
model) by a developer or user. laaS computing systems, network and security are the
responsibilities of the cloud service provider. DaaS means Data as a Service

@® Data at a data centre is made available to a user or developer of application on demand.
DaaS is a service model where the data store or data warehouse is made available
through the Internet on demand on rent (pay as per use in multi tenancy model) to an
enterprise. The data centre management, 24x7 power, control, network, maintenance,
scale up, data replicating and mirror nodes and systems as well as physical security are
the responsibilities of the data centre service provider.

@®© Data at a data centre is made available to a user or developer of application on demand.
DaaS is a service model where the data store or data warehouse is made available
through the Internet on demand on rent (pay as per use in multi tenancy model) to an
enterprise. The data centre management, 24x7 power, control, network, maintenance,
scale up, data replicating and mirror nodes and systems as well as physical security are
the responsibilities of the data centre service provider.



